

SITE ASSESSMENT REPORT

CONTINENTAL HEAT TREATING 10643 SOUTH NORWALK BOULEVARD SANTA FE SPRINGS, CALIFORNIA

Prepared for:

Continental Heat Treating 10643 South Norwalk Boulevard Santa Fe Springs, California 90221

Prepared by:

ENVIRONMENTAL SUPPORT TECHNOLOGIES, INC. 23011 Moulton Parkway, Suite E-6 Laguna Hills, California 92653 (714) 457-9664 Fax (714) 457-0664

Project No. EST1315

May 6, 1997

1.0 INTRODUCTION

On March 10, 14, and 27, 1997, Environmental Support Technologies, Inc. (EST) performed further subsurface investigation at the Continental Heat Treating (CHT) facility located at 10643 South Norwalk Boulevard in Santa Fe Springs, California (Figure 1). This report was prepared to address requirements outlined by the Los Angeles County Fire Department (LACFD) in a letter to CHT dated August 6, 1996.

Site background information, results of previous (Phase 1) soil gas survey work (EST, May 2, 1996), rationale for Phase 2 soil gas sampling locations, and rationale for location of a soil boring were provided in the LACFD-approved "Remedial Investigation Work Plan" (Work Plan) (EST, September 27, 1996). Amendments to the Work Plan were proposed in "Remedial Investigation Work Plan Addendum" (EST, October 8, 1996) and "Addendum No. 2 to Work Plan for Site Assessment" (EST, March 26, 1997) which were subsequently approved by the LACFD.

The subsurface investigation was performed in accordance with the above-referenced work plan, the work plan addendums, and with Environmental Protection Agency (EPA)-recommended procedures for the collection, handling, and analysis of environmental samples.

2.0 SCOPE OF WORK

The scope of subsurface investigation included the following elements:

- Preparation of a Health and Safety Plan to guide the safe performance of work;
- Clearance of subsurface utilities;
- Further multi-depth soil gas survey work at an area of elevated concentrations of volatile organic compounds (VOCs) as indicated by Phase 1 soil gas survey results;
- Advancing a single soil boring to groundwater and collection of soil samples at fivefoot-intervals for lithologic classification, field screening, and laboratory analyses;
- Installation of a vapor extraction well and nested soil gas sampling probes in the boring;
- State-certified laboratory analyses of soil samples for volatile organic compounds (VOCs) using EPA Method 8021;
- Sieve analysis of selected soil samples collected from the soil boring;
- Preparation of this Site Assessment Report.

3.0 PROJECT OBJECTIVES

The objectives of further subsurface investigation work were to:

- Assess the vertical extent of soil impacted by VOCs;
- Characterize subsurface lithology from grade to first-encountered groundwater;
- Assess current depth-to-groundwater;
- Evaluate the necessity of shallow soil remediation using Los Angeles Regional Water Quality Control Board (LARWQCB) criteria.

4.0 RATIONALE FOR SAMPLING LOCATIONS

Locations and depths of soil gas sampling probes installed on March 10 and 14, 1997 were based on results of prior soil sampling (Green Environmental, February 6, 1995) and on results of Phase 1 soil gas survey work (EST, May 2, 1996). The soil boring/vapor extraction well was located at an area of elevated concentrations of VOCs in soil gas as indicated by results of the Phase 2 multi-depth survey work performed on March 10 and 14, 1997. A plot plan of the CHT facility is shown in Figure 2.

5.0 FIELD METHODS AND PROCEDURES

Methods and procedures for soil gas survey work, subsurface utilities clearance, drilling, soil sampling, soil sample handling, soil sample field screening, soil sample chain-of-custody, and quality assurance/quality control data were provided in the previously referenced work plan (EST, September 27, 1996) and the Work Plan Addendums (EST, October 8, 1996 and March 26, 1997).

6.0 OBSERVATIONS AND RESULTS

Field measurements, observations, and laboratory analyses results for soil gas and soil samples are discussed in the following sections.

6.1 SOIL GAS ANALYSES RESULTS

Further (Phase 2) multi-depth soil gas survey work at CHT included the installation of two (2) 12-foot-deep, four (4) 15-foot-deep, four (4) 25-foot-deep, and two (2) 35-foot-deep soil gas sampling probes. The approximate locations of the soil gas probes are shown in Figure 3. Soil gas samples were collected from the multi-depth probes and analyzed for VOCs on-site using a mobile environmental laboratory. Analyses results for soil gas samples are summarized in Table 1. Laboratory analyses reports and quality assurance/quality control (QA/QC) data are provide in Appendix A.

TABLE OF CONTENTS

			<u>Page</u>
WARI	RANTII	ES AND LIMITATIONS	
EXEC	UTIVE	SUMMARY	
1.0	INTR	ODUCTION	1
2.0	SCOP	E OF WORK	1
3.0	PRОЛ	ECT OBJECTIVES	2
4.0	RATIO	ONALE FOR SAMPLING LOCATIONS	2
5.0	FIELD	METHODS AND PROCEDURES	2
6.0	OBSE	RVATIONS AND RESULTS	2
	6.1 6.2	Soil Gas Analyses Results	2
		Extraction Well with Nested Soil Gas Probes	4
	6.3 6.4	Lithologic Characterization of Soil	4 5
	6.5	Investigation-Derived Soil Cuttings.	5
7.0	PROP	OSED SOIL CLEAN-UP LEVELS	6
8.0	CONC	LUSIONS	6
REFE	RENCE	S .	
TABL	ES		
1. 2. 3.	Summa Propos	ary of Field Analyses Results for Soil Gas Samples ary of Laboratory Analyses Results for Soil Samples sed Soil Clean-up Goals for PCE and TCE Based on LARWQCB At Method	tenuation
4.	Compa	arison of Maximum Detected Values of PCE and TCE in Soil and So Proposed Soil Clean-up Goals	il Gas

TABLE OF CONTENTS, Continued

FIGURES

- 1. Site Location Map
- 2. Site Map
- 3. Approximate Locations of Phase 2 Soil Gas Sampling Probes
- 4. Detected Concentrations of PCE in Phase 1 and Phase 2 Soil Gas Probes and Location of Soil Boring CHT-B1
- 5. Construction Detail of Vapor Extraction Well With Nested Soil Gas Probes

APPENDICES

- A. Laboratory Analyses Reports and QA/QC Data for Soil Gas Samples
- B. USCS Criteria
- C. Sieve Analyses Results for Soil Samples
- D. Soil Boring Log
- E. Laboratory Analyses Reports and Chain-of-Custody Form for Soil Samples

SITE ASSESSMENT REPORT

Continental Heat Treating 10643 South Norwalk Boulevard Santa Fe Springs, California

WARRANTIES AND LIMITATIONS

This Site Assessment Report was prepared by Environmental Support Technologies, Inc. (EST) for the exclusive use of Continental Heat Treating and assigned interested parties. The services described within this document were performed in accordance with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made.

The information contained in this report was based on measurements performed in specific areas during a specific time period. EST's professional opinions and conclusions are based in part on interpretation of data from discrete sampling or measurement locations that may not represent actual conditions at unsampled or unmeasured locations.

EST assumes no responsibility for issues arising from changes in environmental standards, practices, or regulations subsequent to performance of site assessment work. In the event that any changes occur in waste management practices, site conditions, or uses of the property, the conclusions and recommendations contained in this document should be reviewed and modified or verified in writing by EST. EST does not warrant the accuracy of information supplied by others, nor the use of segregated portions of this document.

Kirk Thomson, R.G., C.HG., R.E.A., M.S. Project Manager/Principal Hydrogeologist

Michael E. Tye
Project Hydrogeologist

EXECUTIVE SUMMARY

On March 10, 14, and 27, 1997, Environmental Support Technologies, Inc. (EST) performed site assessment work at the Continental Heat Treating (CHT) facility located at 10643 South Norwalk Boulevard in Santa Fe Springs, California. Recent site assessment work was performed to address requirements set forth by the Los Angeles County Fire Department (LACFD) in a letter to CHT dated August 6, 1996. The site investigation was performed in accordance with the LACFD-approved "Remedial Investigation Work Plan" (EST, September 26, 1996), "Remedial Investigation Work Plan Addendum" (EST, October 8, 1996), and "Addendum No. 2 to Work Plan for Site Assessment" (EST, March 26, 1997).

The scope of subsurface investigation at the CHT site included further (Phase 2) multidepth soil gas survey work. Locations and depths of Phase 2 soil gas sampling probes were based on previous soil gas analyses results (EST, May 2, 1996). A total of two (2) 12-footdeep, four (4) 15-foot-deep, four (4) 25-foot-deep, and two (2) 35-foot-deep soil gas probes were installed, located generally in the vicinity of the former vapor degreaser. Soil gas samples were subsequently collected from the probes and analyzed on-site for volatile organic compounds (VOCs) by a mobile laboratory.

Analyses results for multi-depth soil gas samples indicated the presence of chlorinated VOCs, primarily tetrachloroethene (PCE) and trichloroethene (TCE). Concentrations of PCE were detected in 12 of 12 soil gas samples, ranging from 21 micrograms per liter (μ g/L) to a maximum of 1,948 μ g/L at approximately 35-feet below grade (Probe SG5-35). Concentrations of TCE were detected in 10 of 12 soil gas samples, ranging from 7 μ g/L to a maximum of 156 μ g/L at approximately 35-feet below grade (Probe SG5-35). Lesser concentrations of PCE and TCE degradation compounds, including vinyl chloride (maximum 55 μ g/L), trans-1,2-dichloroethene (maximum 27 μ g/L), cis-1,2-dichloroethene (maximum 124 μ g/L) were detected in the Phase 2 soil gas samples.

Aromatic hydrocarbons, including benzene, toluene, ethylbenzene, and xylene (BTEX) were also detected in several Phase 2 soil gas samples. Benzene was detected in two soil gas samples collected from approximately 35-feet below grade in Probes SG5-35 and SG10-35 at concentrations of $91\mu g/L$ and $188 \mu g/L$, respectively. Detected concentrations of toluene in soil gas ranged from 57 $\mu g/L$ to a maximum of 257 $\mu g/L$. Ethylbenzene was detected in one soil gas sample (Probe SG9-15) at a concentration of 4 $\mu g/L$. Xylene was detected in two soil gas samples at concentrations of 6 $\mu g/L$ and 18 $\mu g/L$.

Based on Phase 2 soil gas analyses results, a single soil boring was located inside the facility and advanced to groundwater using hollow-stem auger drilling methods. Groundwater was encountered at approximately 68 feet below current grade. Undisturbed soil samples were collected at approximate five-foot-intervals from the boring and screened for total organic vapors (TOVs) in the field. Soil samples were visually inspected and classified in the field using Unified Soil Classification (USCS) criteria.

Upon encountering first groundwater and completion of soil sampling, nested soil gas sampling probes were installed at approximately 50 and 60 feet below grade in the borehole during back-filling. Upon back-filling to approximately 45 feet below grade, a vapor extraction well was installed in the bore-hole to address VOC-impacted soil as indicated by prior soil gas analyses results. The vapor extraction well was completed slightly above grade using a traffic-rated well-cover set in concrete.

A total of 13 soil samples were collected from the boring and analyzed for VOCs by a state-certified environmental laboratory (Sierra Laboratories, Laguna Hills, California - ELAP No. 1805). Additionally, six (6) soil samples collected at approximate 10-foot-intervals from the boring were subjected to sieve analysis to verify visual soil classification performed during drilling.

Concentrations of PCE were detected in soil samples collected from 5 to 60 feet below grade. Detected concentrations of PCE in soil ranged from 4.8 micrograms per kilogram (μ g/Kg) to a maximum of 130 μ g/Kg at approximately 60 feet below grade (sample CHT-B1-60). Concentrations of TCE were detected in soil samples collected from 5 to 30 feet below grade, and at approximately 40, 45, and 60 feet below grade. Detected concentrations of TCE in soil samples ranged from 3 μ g/Kg to a maximum of 20 μ g/Kg at approximately 5 feet below grade (sample CHT-B1-5). Concentrations of TCE were not detected above the laboratory method detection limit (MDL) of 3 μ g/Kg in soil samples collected from approximately 35, 50, 55, and 65 feet below grade. Concentrations of cis-1,2-dichloroethene (maximum 17 μ g/Kg) were detected in two soil samples. Toluene was detected in one soil sample collected from approximately 60 feet below grade at a concentration of 6.5 μ g/Kg.

1.0 INTRODUCTION

On March 10, 14, and 27, 1997, Environmental Support Technologies, Inc. (EST) performed further subsurface investigation at the Continental Heat Treating (CHT) facility located at 10643 South Norwalk Boulevard in Santa Fe Springs, California (Figure 1). This report was prepared to address requirements outlined by the Los Angeles County Fire Department (LACFD) in a letter to CHT dated August 6, 1996.

Site background information, results of previous (Phase 1) soil gas survey work (EST, May 2, 1996), rationale for Phase 2 soil gas sampling locations, and rationale for location of a soil boring were provided in the LACFD-approved "Remedial Investigation Work Plan" (Work Plan) (EST, September 27, 1996). Amendments to the Work Plan were proposed in "Remedial Investigation Work Plan Addendum" (EST, October 8, 1996) and "Addendum No. 2 to Work Plan for Site Assessment" (EST, March 26, 1997) which were subsequently approved by the LACFD.

The subsurface investigation was performed in accordance with the above-referenced work plan, the work plan addendums, and with Environmental Protection Agency (EPA)-recommended procedures for the collection, handling, and analysis of environmental samples.

2.0 SCOPE OF WORK

The scope of subsurface investigation included the following elements:

- Preparation of a Health and Safety Plan to guide the safe performance of work;
- Clearance of subsurface utilities;
- Further multi-depth soil gas survey work at an area of elevated concentrations of volatile organic compounds (VOCs) as indicated by Phase 1 soil gas survey results;
- Advancing a single soil boring to groundwater and collection of soil samples at fivefoot-intervals for lithologic classification, field screening, and laboratory analyses;
- Installation of a vapor extraction well and nested soil gas sampling probes in the boring;
- State-certified laboratory analyses of soil samples for volatile organic compounds (VOCs) using EPA Method 8021;
- Sieve analysis of selected soil samples collected from the soil boring;
- Preparation of this Site Assessment Report.

3.0 PROJECT OBJECTIVES

The objectives of further subsurface investigation work were to:

- Assess the vertical extent of soil impacted by VOCs;
- Characterize subsurface lithology from grade to first-encountered groundwater;
- Assess current depth-to-groundwater;
- Evaluate the necessity of shallow soil remediation using Los Angeles Regional Water Quality Control Board (LARWQCB) criteria.

4.0 RATIONALE FOR SAMPLING LOCATIONS

Locations and depths of soil gas sampling probes installed on March 10 and 14, 1997 were based on results of prior soil sampling (Green Environmental, February 6, 1995) and on results of Phase 1 soil gas survey work (EST, May 2, 1996). The soil boring/vapor extraction well was located at an area of elevated concentrations of VOCs in soil gas as indicated by results of the Phase 2 multi-depth survey work performed on March 10 and 14, 1997. A plot plan of the CHT facility is shown in Figure 2.

5.0 FIELD METHODS AND PROCEDURES

Methods and procedures for soil gas survey work, subsurface utilities clearance, drilling, soil sampling, soil sample handling, soil sample field screening, soil sample chain-of-custody, and quality assurance/quality control data were provided in the previously referenced work plan (EST, September 27, 1996) and the Work Plan Addendums (EST, October 8, 1996 and March 26, 1997).

6.0 OBSERVATIONS AND RESULTS

Field measurements, observations, and laboratory analyses results for soil gas and soil samples are discussed in the following sections.

6.1 SOIL GAS ANALYSES RESULTS

Further (Phase 2) multi-depth soil gas survey work at CHT included the installation of two (2) 12-foot-deep, four (4) 15-foot-deep, four (4) 25-foot-deep, and two (2) 35-foot-deep soil gas sampling probes. The approximate locations of the soil gas probes are shown in Figure 3. Soil gas samples were collected from the multi-depth probes and analyzed for VOCs on-site using a mobile environmental laboratory. Analyses results for soil gas samples are summarized in Table 1. Laboratory analyses reports and quality assurance/quality control (QA/QC) data are provide in Appendix A.

Concentrations of chlorinated and aromatic VOCs were detected in soil gas sampled collected at the CHT site. Chlorinated VOCs detected in soil gas samples included vinyl chloride (VC), trans-1,2-dichloroethene (t-1,2-DCE), cis-1,2-dichloroethene (c-1,2-DCE), trichloroethene (TCE), and tetrachloroethene (PCE). Aromatic VOCs detected in soil gas samples included benzene, toluene, ethylbenzene, and total xylene (BTEX). Concentrations of PCE detected during the Phase 2 soil gas survey are posted in Figure 4. Results of soil gas analyses are discussed below.

6.1.1 Vinyl Chloride (VC)

Concentrations of VC were detected in 6 of 12 multi-depth soil gas samples. Detected concentrations of VC in soil gas ranged from 15 micrograms per liter ($\mu g/L$) in the sample collected from Probe SG1-12 (12-feet-deep) to a maximum of 55 $\mu g/L$ in the sample collected from Probe SG11-15 (15-feet-deep).

6.1.2 Trans-1,2-Dichloroethene (t-1,2-DCE)

Concentrations of t-1,2-DCE were detected in 4 of 6 multi-depth soil gas samples. Detected concentrations of t-1,2-DCE in soil gas ranged from 3 μ g/L in the sample collected from Probe SG1-12 to a maximum of 27 μ g/L in the sample collected from Probe SG5-15 (15-feet-deep).

6.1.3 Cis-1,2-Dichloroethene (c-1,2-DCE)

Concentrations of c-1,2-DCE were detected in 10 of 12 soil gas samples. Detected concentrations of c-1,2-DCE in soil gas ranged from 10 μ g/L in the sample collected from Probe SG9-15 (15-feet-deep) to a maximum of 124 μ g/L in the sample collected from Probe SG5-15.

6.1.4 Trichloroethene (TCE)

Concentrations of TCE were detected in 10 of 12 soil gas samples. Detected concentrations of TCE in soil gas ranged from 7 μ g/L in the sample collected from Probe SG1-12 (12-feet-deep) to a maximum of 156 μ g/L in the sample collected from Probe SG5-35 (35-feet-deep).

6.1.5 Tetrachloroethene (PCE)

Concentrations of PCE were detected in 12 of 12 soil gas samples. Detected concentrations of PCE in soil gas ranged from 21 μ g/L in the sample collected from Probe SG1-12 to a maximum of 1,948 μ g/L in Probe SG5-35.

6.1.6 Benzene

Benzene was detected in soil gas samples collected from Probes SG5-35 and SG10-35 at concentrations of 91µg/L and 188 µg/L, respectively.

6.1.7 Toluene

Concentrations of toluene were detected in 9 of 12 soil gas samples. Detected concentrations of toluene ranged from 57 μ g/L in Probe SG12-12 (12-feet-deep) to a maximum of 257 μ g/L in Probe SG11-25 (25-feet-deep).

6.1.8 Ethylbenzene

Ethylbenzene was detected in the soil gas sample collected from Probe SG9-15 (15-feet-deep) at a concentration of 4 μ g/L.

6.1.9 Total Xylene

Total (meta + para + ortho) xylene was detected in soil gas samples collected from Probes SG5-15 (15-feet-deep) and SG9-15 (15-feet-deep) at concentrations of 6 μ g/L and 18 μ g/L, respectively.

6.2 DRILLING, SOIL SAMPLING, AND INSTALLATION OF A VAPOR EXTRACTION WELL WITH NESTED SOIL GAS PROBES

Based on results of the Phase 2 soil gas survey, a single soil boring was advanced in the vicinity of the former vapor degreaser. The approximate location of the soil boring (CHT-B1) is shown (with detected Phase 2 soil gas concentrations of VOCs) in Figure 4. Per LACFD requirements, the location of Boring CHT-B1 was referenced to a fixed datum point. The datum point used to locate CHT-B1 was the intersection of the southern CHT property line with the curb-line of South Norwalk Boulevard. Soil boring CHT-B1 was located approximately 147 feet east of, and 118 feet north of the datum point. Details of proposed drilling and soil sampling were provided in the Work Plan (EST, September 27, 1996). Details of the proposed vapor extraction well installation with nested soil gas probes were provided in Work Plan Addendum No. 2 (EST, March 26, 1997). Construction detail of the vapor extraction well with nested probes is shown in Figure 5.

6.3 LITHOLOGIC CHARACTERIZATION OF SOIL

Soil samples collected from the boring were visually classified using Unified Soil Classification (USCS) criteria. USCS criteria are provided in **Appendix B**. Sieve analyses were performed on selected soil samples to verify field classifications. Laboratory reports for sieve analyses are provided in **Appendix C**. The soil boring log is provided in **Appendix D**.

The boring was advanced at a 5-inch-thick concrete-paved location inside the facility. Lithologic materials encountered from below concrete-paving material to the water table (encountered at approximately 68 feet below grade) were predominantly clayey-silts with fine-to medium-grained sands (USCS Classification SM-ML), silts (USCS Classification ML) and silty-clays with fine sands (USCS Classification ML-CL).

6.4 CHEMICAL CHARACTERIZATION OF SOIL

Soil samples were analyzed for VOCs using EPA Method 8021. Laboratory analyses results for soil samples are summarized in **Table 2**. Laboratory analyses reports and quality assurance/quality control data for soil samples are provided in **Appendix E**. A total of thirteen (13) soil samples were collected at 5-foot-intervals from soil boring CHT-B1 and analyzed for VOCs. Concentrations of PCE, TCE, c-1,2-DCE, and toluene were detected in soil samples collected from the soil boring. Results of soil sample analyses are discussed below.

6.4.1 PCE

Concentrations of PCE were detected in soil samples collected from 5- to 60-feet below grade. Detected concentrations of PCE ranged from 4.8 micrograms per kilogram ($\mu g/Kg$) in soil sample CHT-B1-50 (collected from approximately 50 feet below grade) to a maximum of 130 $\mu g/Kg$ in soil sample CHT-B1-60 (collected from approximately 60 feet below grade). PCE was not detected above the laboratory method detection limit (MDL) of 3 $\mu g/Kg$ in the soil sample collected from approximately 65 feet below grade (CHT-B1-65). Detected concentrations of PCE were variable with depth, and did not exhibit apparent increasing or decreasing trends.

6.4.2 TCE

Concentrations of TCE were detected in soil samples collected from 5- to 30-feet below grade, from 40- and 45-feet below grade, and at 60-feet below grade. Detected concentrations of TCE ranged from 3 μ g/Kg in soil sample CHT-B1-40 (collected from approximately 40 feet below grade) to a maximum of 20 μ g/Kg in soil sample CHT-B1-5 (collected from approximately 5 feet below grade). TCE was not detected above the laboratory method detection limit (MDL) of 3 μ g/Kg in soil samples collected from approximately 35-, 50-, 55-, and 65 feet below grade. Detected concentrations of TCE were variable with depth, and did not exhibit apparent increasing or decreasing trends.

6.4.3 C-1,2-DCE

C-1,2-DCE was detected in soil samples collected from approximately 30- (CHT-B1-30) and 50-feet (CHT-B1-50) below grade in the boring, at concentrations of 17 μ g/Kg and 17 μ g/Kg, respectively. C-1,2-DCE was not detected above the MDL of 3 μ g/Kg in other soil samples collected from the boring.

6.4.4 Toluene

Toluene was detected in soil sample CHT-B1-60 at a concentration of 6.5 μ g/Kg. Toluene was not detected above the MDL (3 μ g/Kg) in other soil samples collected from the boring.

6.5 INVESTIGATION-DERIVED SOIL CUTTINGS

Soil cuttings generated by hollow-stem auger drilling were contained in five (5) steel 55-gallon drums. The soil containment drums were labeled, secured, and left on-site near the western exit of the building. Treatment or disposal of investigation-derived soil cuttings is the responsibility of CHT. EST will assist CHT in evaluating the most appropriate treatment/disposal options, if requested.

7.0 PROPOSED SOIL CLEAN-UP LEVELS

Proposed soil clean-up levels (SCLs) were calculated using the LARWQCB Attenuation Factor Method (LARWQCB, February 1996). The attenuation factor method consists of a series of equations, into which site-specific variables (including depth-to-groundwater, subsurface lithology, and the identity of the contaminant(s) are input.

Parameters used to calculate SCLs for the CHT site included depth-to-groundwater of 68 feet, silt lithology from grade to the water table, and PCE and TCE as contaminants. Proposed SCLs are presented in **Table 3**. Maximum detected values of PCE and TCE (excluding soil gas values for the northwest corner of the site due to potential off-site source) in soil and soil gas are summarized and compared to proposed SCLs in **Table 4**.

8.0 CONCLUSIONS

Soil in the vicinity of the former degreaser has been impacted primarily by PCE and TCE from grade to the water table, as indicated by analytical results for soil gas and soil samples. Concentrations of PCE and TCE detected in soil gas samples collected from approximately 5, 15, 25, and 35-feet below grade exceed proposed SCLs. Concentrations of PCE and TCE detected in soil samples collected from the boring are below proposed SCLs, with the exception of soil sample CHT-B1-60, collected from approximately 60 feet below grade.

REFERENCES

Marshack, Jon. B., September 1991. A Compilation of Water Quality Goals - A Staff Report of the California Regional Water Quality Control Board.

Environmental Support Technologies, Inc., November 20, 1995. Work Plan to Perform a Multi-Depth Soil Gas Survey - Continental Heat Treating Site - 10643 South Norwalk Boulevard, Santa Fe Springs, California.

Los Angeles Regional Water Quality Control Board, February 14, 1996. Interim Guidelines for Remediation of VOC-Impacted Sites.

Environmental Support Technologies, Inc., May 8, 1996. Multi-Depth Soil Gas Survey Report - Continental Heat Treating - 10643 South Norwalk Boulevard, Santa Fe Springs, California.

County of Los Angeles Fire Department, August 6, 1996. Letter to Continental heat Treating reviewing results of May 8, 1996 soil gas survey report and requesting further site investigation and submittal of a Remedial Investigation Work Plan.

Environmental Support Technologies, Inc., September 27, 1996. Remedial Investigation Work Plan - Continental Heat Treating Site - 10643 South Norwalk Boulevard, Santa Fe Springs, California.

Environmental Support Technologies, Inc., October 8, 1996. Remedial Investigation Work Plan Addendum - Continental Heat Treating - 10643 South Norwalk Boulevard, Santa Fe Springs, California.

County of Los Angeles Fire Department, January 15, 1997. Letter to Continental Heat Treating stating review and approval of "Remedial Investigation Work Plan" and "Remedial Investigation Work Plan Addendum".

Environmental Support Technologies, Inc., March 26, 1997. Addendum No. 2 to Work Plan for Site Assessment - Continental Heat Treating - 10643 South Norwalk Boulevard, Santa Fe Springs, California.

County of Los Angeles Fire Department, March 28, 1997. Letter to Continental Heat Treating stating receipt, review, and approval of "Addendum No. 2 to Work Plan for Site Assessment".

TABLE 1

SUMMARY OF FIELD ANALYSES RESULTS FOR SOIL GAS SAMPLES

CONTINENTAL HEAT TREATING 10643 SOUTH NORWALK BOULEVARD SANTA FE SPRINGS, CALIFORNIA

13/18/97

CHT SOIL GAS RESULTS

SAMPLING	i i	PROBE	SAMPLING		Chlorinate	d Hydrocarbo	ns (ug/L)*		An	omatic Hydrod		(gas result L)*
DATE	IDENTIFICATION	DEPTH (feet)	EVENTS	VC	T-1,2-DCE	C-1,2-DCE	TCE	PCE	BENZENE	TOLUENE	EBENZ	XYLS
03/10/97	SG1-12	12	2	15	3	23	7	21	ND<1	ND<1	ND<1	ND<1
	SG5-15	15	5	50	27	124	105	1,151	ND<5	148	ND<5	6
	SG5-25	25	1 1	ND<50	ND<50	ND<50	ND<50	597	ND<50	ND<50	ND<50	ND<50
03/14/97	SG5-35	35_	3	ND<25	ND<25	45	156	1,948	91	101	ND<25	ND<25
03/10/97	SG9-15	15	4	45	10	10	28	503	ND<1	214	4	18
	SG9-25	25	1	ND<20	ND<20	ND<20	ND<20	213	ND<20	123	ND<20	ND<20
	SG10-15	15	2	25	ND<10	24	33	118	ND<10	ND<10	ND<10	ND<10
	SG10-25	25	2	29	24	82	116	533	ND<5	87	ND<5	ND<5
03/14/97	SG10-35	35	3	ND<10	ND<10	26	103	1,172	188	144	ND<10	ND<10
03/10/97	SG11-15	15	1	55	ND<20	48	92	445	ND<20	208	ND<20	ND<20
	SG11-25	25	1	ND<20	ND<20	26	44	368	ND<20	257	ND<20	ND<20
	SG12-12	12	1	ND<10	ND<10	31	23	284	ND<10	57	ND<10	ND<10

^{* =} Reported analyte concentrations are the highest detected in each probe within calibration range

ND = not detected above stated laboratory method detection limit (MDL)

(ug/L) = micrograms of compound per liter of soil gas

PCE = tetrachioroethene; synonym: perchioroethylene

XYLS = total (meta+para+ortho) xylene

T-1,2-DCE = trans-1,2-dichloroethene

C-1,2-DCE = cis-1,2-dichloroethene

EBENZ = ethylbenzene

TCE = trichloroethene

VC = vinyl chloride

TABLE 2

SUMMARY OF LABORATORY ANALYSES RESULTS FOR SOIL SAMPLES

CONTINENTAL HEAT TREATING 10643 SOUTH NORWALK BOULEVARD SANTA FE SPRINGS, CALIFORNIA

04/09/97

CHT SOIL RESULTS

SAMPLE	SAMPLE	SAMPLE	Det	ected EPA Method	8021 Analytes (ug/	Kg)
DATE	IDENTIFICATION	DEPTH (feet)	Tetrachloroethene	Trichloroethene	c-1,2-DCE	Toluene
03/27/97	CHT-B1-5	5	40	20	ND<3	ND<3
	CHT-B1-10	10	31	9.6	ND<3	ND<3
	CHT-B1-15	15	110	17	ND<3	ND<3
	CHT-B1-20	20	42	14	ND<3	ND<3
	CHT-B1-25	25	29	7	ND<3	ND<3
	CHT-B1-30	30	50	9.4	17	ND<3
	CHT-B1-35	35	8.4	ND<3	ND<3	ND<3
	CHT-B1-40	40	16	3	ND<3	ND<3
	CHT-B1-45	45	27	4	ND<3	ND<3
	CHT-B1-50	50	4.8	ND<3	17	ND<3
	CHT-B1-55	55	5.2	ND<3	ND<3	ND<3
	CHT-B1-60	60	130	7.7	ND<3	6.5
	CHT-B1-65	65	ND<3	ND<3	ND<3	ND<3

(ug/Kg) = micrograms of compound per kilogram of soil c-1,2-DCE = cis-1,2-dichloroethene

ND = not detected above stated laboratory method detection limit

p.1 of 1 PROPOSED SOIL CLEAN-UP GOALS FOR PCE AND TCE BASED ON LARWOCB ATTENUATION FACTOR METHOD TABLE 04/115/97

(Source: "Interim Guidelines for Remediation of VOC-Impacted Sites", LARWQCB, February 14, 1996)

INPLIT PARAMETERS

DTW (feet) = Approximately 68-feet below grade. LITHOLOGY = Silt from grade to water table.

VOC(s) = Trichloroethene (TCE) and Tetrachloroethene (PCE)

CHT SCL TABLE SCL (ppb) = 150 181 121 9 69 5 42 33 9 9 24 9 TETRACHLOROETHENE (AF = 729) MCL (ppb) S 5 S AF(t) =41.96 36.19 30.10 24.10 18.15 13.83 12.01 10.25 8.46 3.10 6.66 4.86 1.28 120.6 180.3 150.4 90.80 51.33 33.36 15.38 42.34 210.1 69.31 24.37 AF(d): 60.31 6.39 (qdd) 30 2 40 40 SCL (AF = 145)п MCL (ppb) S Ġ S S S S TRICHLOROETHENE 1.0 (Note 1) (Note 1) AF(t) = 7.19 1.40 8.32 5.94 4.80 2.74 2.44 2.10 1.75 3.61 1.07 0. 35.85 29.92 23.99 18.10 13.83 12.14 10.45 8.76 7.10 5.39 3.70 AF(d) 2.01 53 8 53 38 33 28 23 8 33 ω Ω 200 BGS (feet) 25 30 35 45 20 55 9 65 9 5 6 20

BGS = depth below ground surface

D = depth to groundwater below depth of interest
AF = compound attenuation factor (From LARWQCB Table 1)

Note 1: AF(d) and AF(t) values must be greater than 1 by definition

LARWQCB = Los Angeles Regional Water Quality Control Board

AF(t) = AF(d) modified based on site lithology.

MCL = maximum contaminant level (for drinking water).

(ppb) = parts per billion

AF(d) = AF modified for depth-to-groundwater.

(ppb) = pans per billion SCL = proposed soil clean-up level

04HS/ST			TABLE 4			p10(1
	COMPAF IN SOIL	COMPARISON OF MAXIMUM DETECTED VALUES OF PCE AND TCE IN SOIL AND SOIL GAS WITH PROPOSED SOIL CLEAN-UP GOALS	JM DETECTED A WITH PROPOSEI	ALUES OF PCEA SOIL CLEAN-UP		CHT COMPARISON TABLE
VOC	Tet	etrachloroethene (PCE))E)	7	Trichloroethene (TCE)	9
BGS (feet)	Soil (ug/Kg)	Soil gas (ug/L)	SCL (ppb)	Soil (ug/Kg)	Soil gas (ug/L)	SCL (ppb)
0.5	7,514 (1)	-	NC	4,759 (1)	1	S
ស	40 (5)	240 (2)	209	20 (5)	246 (2)	42
10	31 (5)	i	181	9.6 (5)		36
15	110 (5)	1,151 (3)	150	17 (5)	105 (3)	30
20	42 (5)	l	121	14 (5)	1	24
25	29 (5)	597 (3)	91	7 (5)	116 (3)	18
30	50 (5)		69	9.4 (5)	1	4
35	8.4 (5)	1,948 (4)	90	ND<3 (5)	156 (4)	12
40	16 (5)		51	3 (5)	1	=
45	27 (5)		42	3 (5)	1	6
20	4.8 (5)	ı	33	ND<3 (5)	1	7
55	5.2 (5)		24	ND<3 (5)	1	S
09	130 (5)		16	7.7 (5)	1	ß
65	ND<3 (5)		9	ND<3 (5)		5
BGS = depth below ground surface NC = not calculated (ug/Kg) = micrograms of compound (ug/L) = micrograms of compound (ppb) = parts per billion —— = not applicable SCL = soil clean-up level (proposec	_ 0 📆	I per kilogram of soil per liter of soil gas 3)		(1) Green Environ(2) Environmental(3) Environmental(4) Environmental(5) Environmental	Green Environmental, 02/06/95 Environmental Support Technologies, 05/02/96 Environmental Support Technologies, 03/10/97 Environmental Support Technologies, 03/14/97 Environmental Support Technologies, 03/27/97	ies, 05/02/96 ies, 03/10/97 ies, 03/14/97 ies, 03/27/97

FIGURES

Source of Map: Thomas Bros., L.A. County, 1992

FIGURE 1 SITE LOCATION MAP CONTINENTAL HEAT TREATING SITE ASSESSMENT REPORT EST1315

EST1315D.DWG

APPENDIX A

LABORATORY ANALYSES REPORTS AND QA/QC DATA FOR SOIL GAS SAMPLES

TABLE B-1

HALOGENATED AND AROMATIC HYDROCARBONS FIELD ANALYSES RESULTS FOR SOIL GAS SAMPLES SITE LOCATED AT 10643 SOUTH NORWALK BOULEVARD, SANTA FE SPRINGS, CALIFORNIA

25-TARGET COMPOUND LIST
PIDELCD #2-3/1097.
FILE 131585CR

	illinghidadada	tallen latt Perfilmeten No		katinisa ista suureen maratett						
SAMPLE ID			SG9-15	SG9-15	SG9-15	SG9-15	SG11-15	SG5-15	SG5-15	SG5-15
DATE			3/10/97	3/10/97	3/10/97	3/10/97	3/10/97	3/10/97	3/10/97	3/10/97
TIME			9:32	9:56	10:15	10:34	10:59	11:21	11:43	12:03
INJECTION VOLUME (山)			500	25	25	25	25	100	20	5
PURGE VOLUME (ml)			200	200	400	800	400	400	400	400
VACUUM (in. Hg)			ND	ND	ND	ND	ND	ND	ND	ND
DILUTION FACTOR			1	20	20	20	20	5	25	100
REPORTABLE LIMIT (µg/L)			1	20	20	20	20	5	25	100
COMMENTS		455								Syringe
	RT	ARF	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	leak 0.00E+00
Dichlorodifluoromethane	5:00	1.85E+05	ND	ND	ND	ND	ND	ND	ND	ND
			7.95E+02	3.98E+02	3.11E+02	3.17E+02	4.88E+02	1.46E+03	3.53E+02	0.00E+00
Vinyl chloride	5:27	3.55E+05	er omennermentermoent mentime	45	35	attender between the second	55	41	50	ND<100
Chloroethane	5:78	1.16E+05	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Chloroethane	3.70	1.102+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00
Trichlorofluoromethane	6:08	6.82E+05	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,2-Trichloro-trifluoroethane	6:50	3.72E+05	ND	ND	ND	ND	ND	ND	ND	ND
1.1 Dishlarashar	0.00	6 205 : 25	1.29E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.10E+01	0.00E+00	0.00E+00
1,1-Dichloroethene	6:80	6.26E+05	ND<1 0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 5.00E+01	ND<5 0.00E+00	ND 0.00E+00	ND 0.00E+00
Methylene chloride	7:27	6.85E+05	ND	ND ND	ND ND	ND ND	ND<20	ND ND	ND ND	ND ND
	1		2.79E+03	6.40E+01	8.70E+01	6.10E+01	0.00E+00	1.53E+03	1.57E+02	0.00E+00
trans (1.2 Dichlorcethene	7.58	5,65E+05	10	ND<20	ND<20	ND<20 •	ND<20	27.	ND+25	ND<100
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.60E+01	0.00E+00	0.00E+00	0.00E+00
1,1-Dichloroethane	8:02	8.11E+05	ND	ND	ND	ND	ND<20	ND	ND	ND
		8,18E+05	4.04E+03	1.28E+02	1.32E+02	9.60E+01	9.90E+02	1.01E+04	1.27E+03	1.58E+02
cis-1,2-Dichlorcethene	0.00	O.HOETUS	1 0.00E+00	ND<20	ND×20 ***	#ND<20 0.00E+00	48 0 0.00E+00	124 III	78 0.00E+00	ND<100
Chloroform	8:87	1.14E+06	ND	ND	ND	ND	ND	ND	ND ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,1-Trichloroethane	9:35	9.03E+05	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	9:80	8.33E+05	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND
Ozipon teadomonde	3.00	0.00E100	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	9:88	3.03E+04	ND	ND	ND	ND	ND .	ND	ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2-Dichloroethane	9:90	1.91E+06	ND	ND	ND	ND	ND	ND	ND	ND
Fluorobenzene (Surrogate)	10:03	1.70E+04	1.72E+02 202%	7.90E+01 93%	7.90E+01 93%	7.50E+01 88%	7.40E+01 87%	7.40E+01 87%	8.10E+01 95%	8.50E+01 100%
	10.00		1.75E+04	4.97E+02	6.47E+02	3.90E+02	2.12E+03	1.41E+04	1.81E+03	1.48E+02
Trichloroethene	10:60	9.23E+05		22	28	#ND<20	92	152	98	ND<100
sis 1.3 Diableronesses (Surseut)	44.00	6.545.00	3.22E+03	3.14E+03	3.27E+03	3.07E+03	2.97E+03	3.01E+03	3.26E+03	3.28E+03
cis-1,3-Dichloropropene (Surrogate)	11:82	6.54E+05	99% 5.51E+03	96% 1.23E+02	100% 1.48E+02	94% 1.06E+02	91% 1.44E+02	92% 3.59E+02	100% 7.00E+01	100% 0.00E+00
Toluene	12:38	2.77E+04	398	178	214	153	208			ND<100
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,2-Trichlorethane	12:85	8.98E+05	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1 3 V/2	9.24E+05	7.29E+04 158 *	9.59E+03	1.16E+04	7.12E+03	1.03E+04	5.65E+04 611 *	2.70E+04	1.73E+03
terracilioloanierie	15.43	9:24C+V3	0.00E+00	415 0.00E+00	503 0.00E+00	0.00E+00	445 0.00E+00	0.00E+00	1,460 * 0.00E+00	0.00E+00
1,1,1,2-Tetrachloroethane	14:80	9.51E+05	ND	ND	ND	ND	ND	ND	ND	ND
			4.40E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Ethylbenzene	14:77	2,33E+04	4	ND<20	ND<20 ****	#ND<20	ND<20	■ND<5	ND<25	IND<100
meta and para-Xylene	14.80	6.61E+04	4.08E+02	0.00E+00 ND<20	0.00E+00 ND<20	0.00E+00 ND<20	0.00E+00 ND<20	4.10E+01	0.00E+00 ND<25	0.00E+00 ND<100
		v.u.i=704	7.20E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ortino-Xylene	15:68	2.29E+04	B	ND<20	ND<20	*ND<20	NO<20	ND₹5	ND≮25	ND<100
4.4.2.2 Tetrophics office	10.57	9.705.05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,2,2-Tetrachloroethane	10:5/	8.70E+05	ND	ND	ND	ND	ND	ND	ND	ND

Concentrations reported in micrograms per liter ($\mu g/L$)

ND = Not detected

ND< = Not detected above the reported limit of quantitation

RT = Retention time

μl = Microliter

ml = Milliliter

in. Hg = Inches of mercury

ARF = Average response factor

* = Exceeds quantation range

NA = Not Analyzed

3/10/97

TABLE B-1

HALOGENATED AND AROMATIC HYDROCARBONS FIELD ANALYSES RESULTS FOR SOIL GAS SAMPLES SITE LOCATED AT 10643 SOUTH NORWALK BOULEVARD, SANTA FE SPRINGS, CALIFORNIA 25-TARGET COMPOUND LIST

PID/ELCD #2 = 3/10/97			Z9-IA							1589GRP
SAMPLE ID			SG5-15	SG5-15	SG10-15	SG10-15	SG12-12	SG1-12	SG1-12	SG5-25
DATE			3/10/97	3/10/97	3/10/97	3/10/97	3/10/97	3/10/97	3/10/97	3/10/97
TIME			12:24	12:42	13:04	13:21	13:44	14:09	14:26	14:49
INJECTION VOLUME (µI)			10	5	20	50	50	500	100	10
PURGE VOLUME (ml)			400	400	400	400	370	370	370	500
VACUUM (in. Hg)			ND	ND	ND	ND	ND	11	11	ND
DILUTION FACTOR			50	100	25	10	10	1	5	50
REPORTABLE LIMIT (µg/L)			50	100	25	10	10	1	5	50
COMMENTS	RT	ARF								
Dichlorodifluoromethane	5:00	1.85E+05	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND 0.00E+00
			0.00E+00	0.00E+00	0.00E+00 ND<25	4.45E+02	0.00E+00	1.10E+03	5.16E+02	0.00E+00
Viny chloride	5:27	3.55E+05	ND<50	ND<100:::: 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Chloroethane	5:78	1.16E+05	0.00E+00 ND	ND	ND	ND	ND	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00
	0.00		0.00E+00	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	ND ND	ND ND
Trichlorofluoromethane	6:08	6.82E+05	ND 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,2-Trichloro-trifluoroethane	6:50	3.72E+05	ND ND	ND ND	ND	ND	ND	ND	ND	ND
1,1,2-1110111010-2.111011			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1-Dichloroethene	6:80	6.26E+05	ND	ND	ND	ND ND	ND 000E+00	ND ND	0.00E+00	ND 0.00E+00
	7.27	6.85E+05	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00	ND ND
Methylene chloride	7:27	6.60ET00	9.80E+01	5.10E+01	0.00E+00	1.24E+02	1.98E+02	7.82E+02	2.00E+02	0.00E+00
trans-1?-Dichloroetherre	7:58	5.65E+05	9.80E+01 ND≮50	5.10E+01 ND<100	ND<25	1.24E+02	1.80E+02	7.822.402	ND45	ND<50
trans-1,2-Dichloroethene	1,00	5,050100	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1-Dichloroethane	8:02	8.11E+05	ND	ND	ND	ND	ND	ND	ND	ND 2 125+02
	- topopolicy		6.92E+02	3.25E+02	3.69E+02	9.89E+02	1.28E+03	6.54E+03	1.87E+03 23	2.12E+02 ND<50
cis-1;2-Dichloroethene	8:68	8,18E+05		ND<100	ND<25 0.00€+00	0.00E+00	31 0.00E+00	0.00E+00	0.00E+00	0.00E+00
Chloroform	8:87	1.14E+06	0.00E+00 ND	0.00E+00	ND	ND	ND	ND	ND	ND
Olloroionii			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,1-Trichloroethane	9:35	9.03E+05		ND 0.00E+00	ND 0.005+00	ND nme+m	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00
	9:80	8.33E+05	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00	ND ND	ND	ND ND
Carbon tetrachloride	8.00	8.33E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	9:88	3.03E+04	ND	ND	ND	ND	ND	ND	ND ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 ND	0.00E+00
1,2-Dichloroethane	9:90	1.91E+06		ND 7.005+01	ND 8 305+01	ND 7.605+01	ND 6.50E+01	8.10E+01	8.60E+01	7.60E+01
(- · · · · · · · · · · · · · · · · · ·	40:03	705+04	7.90E+01 93%	7.80E+01 92%	8.20E+01 96%	7.60E+01 89%	76%	95%	101%	89%
Fluorobenzene (Surrogate)	10.00	1.70E+04	9.70E+02	3.97E+02	4.66E+02	1.50E+03	1.06E+03	2.94E+03	6.24E+02	2.59E+02
Trichloroethens	10.60	9.23E+05		ND×100	25 🖦	FF-33	- 23	6 / 4		# ND<50##
	T		3.07E+03	3.09E+03	3.22E+03	3.21E+03	2.83E+03	3.36E+03	3,41E+03 10.4%	3.15E+03 96%
cis-1,3-Dichloropropene (Surrogate)	11:82	6.54E+05	94%	95%	99%	98% 0.00E+00	86% 7.90E+01	103% 0.00E+00	104% 0.00E+00	96% 0.00E+00
Toluene	12:38	2.77E+04	4.10E+01	0.00E+00 ND<100	0.00E+00 = ND:25	ND<10	57	ND<1	ND<5	
1,1,2-Trichlorethane		8.98E+05	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	ND
Tetrachloroethene	13:43	9.24E+05	1.63E+04 1,760	5.32E+03 * 1.150	1.81E+03 98		1.31E+04 284	1.44E+04 31		5.52E+03 597
A STATE OF THE PROPERTY OF THE			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,1,2-Tetrachloroethane	14:80	9.51E+05	0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	0.00E+00	0.00E+00	0.00E+00
Ethylbenzene	14:77	2/33E104		ND<100	ND<25	ND<10 0.00E+00	ND≪10 0.00E+00	ND<1 0.00E+00	ND<5 0.00€+00	ND<50 0.00E+00
meta and para-Xylene	14:88	6.61E+04	# ND<50	ND<100	ND<25	ND<10	-Noxio	ND<1	ND<5	ND<50
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 ND<10	0.00E+00 ND<1	0.00E+00 ND<5	0.00E+00 ND<50
ortho-Xylene	15:68	2.29E+04	ND<50 0.00E+00	ND<100 0.00E+00	ND<25 0.00E+00	ND<10 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,2,2-Tetrachloroethane	16:57	8.70E+05		ND ND	ND	ND	ND	ND	ND	ND
								ADE	o rocoonea factor	,

Concentrations reported in micrograms per liter (µg/L)

ND = not detected

ND< = not detected above the reported limit of quantitation

RT = retention time

microliter ≃ لير

mi = milliliter

in. Hg = inches of mercury

ARF = average response factor

* = exceeds quantitation range

NA = Not Analyzed

3/10/97

TABLE 331

HALOGENATED AND AROMATIC HYDROCARBONS FIELD ANALYSES RESULTS FOR SOIL GAS SAMPLES SITE LOCATED AT 10643 SOUTH NORWALK BOULEVARD, SANTA FE SPRINGS, CALIFORNIA 25-TARGET COMPOUND LIST

PIDELCO #2 - U1497							THE COLUMN AS		ere ta	16CSGRP
SAMPLE ID	Part and a second	mentus dumana mara	SG10-35	SG10-35	SG10-35	SG5-35	SG5-35	SG5-35	l NA	NA
DATE			3/14/97	3/14/97	3/14/97	3/14/97	3/14/97	3/14/97	NA NA	NA NA
TIME			13:23	13:48	14:07	14:37	15:02	15:25	NA	NA .
INJECTION VOLUME (µI)			50	10	10	20	500	500	NA NA	NA
PURGE VOLUME (ml)			600	600	600	600	600	600	NA NA	NA .
VACUUM (in. Hg)			ND	ND	ND	ND	ND	ND	NA NA	NA
DILUTION FACTOR			10	50	50	25	80	80	NA NA	NA
REPORTABLE LIMIT (µg/L)			10	50	50	25	80	80	NA NA	NA
COMMENTS	RT	ARF		Syringe Leak ?			Dilution 1 : 80	Dilution Duplicate		
Dichlorodifluoromethane	5:00	1.85E+05	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	NA NA	NA NA
Vinyl chloride	5:27	3.55E+05	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	NA NA	NA NA
Vinyi dinama	0.27	0.002.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA NA	NA NA
Chloroethane	5:78	1.16E+05	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	NA NA	NA NA
Trichlorofluoromethane	6:08	6.82E+05	ND	ND	ND	ND ND	ND ND	ND ND	NA NA	NA NA
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA NA	NA
1,1,2-Trichloro-trifluoroethane	6:50	3.72E+05	ND	ND	ND	ND	ND	ND	NA	NA
1,1-Dichloroethene	6:80	6.26E+05	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	NA NA	NA NA
1,1-Dichloroeulerie	0.00	0.205.703	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA NA	NA NA
Methylene chloride	7:27	6.85E+05	ND	ND	ND	ND	ND	ND	NA	NA
trans 4 2 Diablaraathana	7.50	5.65E+05	0.00E+00 ND	0.00€+00 ND	5.20E+01 ND<50	1.37E+02 ND<25	0.00E+00 ND	0.00E+00 ND	NA NA	NA NA
trans-1,2-Dichloroethene	7:58	3.03E+U3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA NA	NA NA
1,1-Dichloroethane	8:02	8.11E+05	ND	ND	ND	ND	ND	ND	NA	NA NA
cis-1.2 Dichloroethene	#Oreso	8.18E+05	1.08E+03 26	0.00€+00 ND<50	2.77E+02 ND<50	7.39E+02 45	1.96E+02 ND<80	1.97E+02 ND<80	NA NA	NA NA
CIS-122 DIC HOLDSUIGHT	-Miss	Hardelle de Arthur and	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA NA	NA -
,										
Chloroform	8:87	1.14E+06	ND	ND	ND	ND	ND	ND	NA :	NA
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA NA	NA .
1,1,1-Trichloroethane	9:35	1.14E+06 9.03E+05								
			0.00E+00 ND 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND	NA NA NA NA	NA NA NA NA
1,1,1-Trichloroethane Carbon tetrachloride	9:35 9:80	9.03E+05 8.33E+05	0.00E+00 ND 0.00E+00 ND 1.53E+02	0.00E+00 ND 0.00E+00 ND 0.00E+00	0.00E+00 ND 0.00E+00 ND 5.70E+01	0.00E+00 ND 0.00E+00 ND 5.50E+01	0.00E+00 ND 0.00E+00 ND 0.00E+00	0.00E+00 ND 0.00E+00 ND 0.00E+00	NA NA NA NA	NA NA NA NA
1,1,1-Trichloroethane	9:35	9.03E+05	0.00E+00 ND 0.00E+00 ND 1.53E+02	0.00E+00 ND 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 5.70E+01 188	0.00E+00 ND 0.00E+00 ND 5.50E+01 91	0.00E+00 ND 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND	NA NA NA NA	NA NA NA NA
1,1,1-Trichloroethane Carbon tetrachloride	9:35 9:80	9.03E+05 8.33E+05	0.00E+00 ND 0.00E+00 ND 1.53E+02 101 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<50 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 5.50E+01 91 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<80	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<80 0.00E+00 ND	25 25 25 25 25 25 25 25 25 25	NA NA NA NA NA NA NA
1,1,1-Trichloroethane Carbon tetrachloride Benzene	9:35 9:80 9:88	9.03E+05 8.33E+05 3.03E+04	0.00E+00 ND 0.00E+00 ND 1.53E+02 101	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<50	0.00E+00 ND 0.00E+00 ND 5.70E+01 188	0.00E+00 ND 0.00E+00 ND 5.50E+01 91	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<80	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<80	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	NA NA NA NA NA NA
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Fluorobenzene (Surrogate)	9:35 9:80 9:88 9:90 10:03	9.03E+05 8.33E+05 3.03E+04 1.91E+06 1.70E+04	0.00E+00 ND 0.00E+00 ND 1.53E+02 101 0.00E+00 ND 7.00E+01 82% 3.55E+03	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<50 0.00E+00 ND 9.60E+01 113% 0.00E+00	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND 9.40E+01 111% 9.53E+02	0.00E+00 ND 0.00E+00 ND 5.50E+01 91 0.00E+00 ND 8.40E+01 99% 2.87E+03	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<80 0.00E+00 ND 8.40E+01 99% 8.21E+02	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND-880 0.00E+00 ND 8.00E+01 94% 8.98E+02	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NA NA NA NA NA NA NA NA
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane	9:35 9:80 9:88 9:90 10:03	9.03E+05 8.33E+05 3.03E+04 1.91E+06	0.00E+00 ND 0.00E+00 ND 1.53E+02 101 0.00E+00 ND 7.00E+01 82% 3.55E+03	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<50 0.00E+00 ND 9.60E+01 113% 0.00E+00	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND 9.40E+01 111% 9.53E+02	0.00E+00 ND 0.00E+00 ND 5.50E+01 91 0.00E+00 ND 8.40E+01 99% 2.87E+03	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<80 0.00E+00 ND 8.40E+01 99% 8.21E+02	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND-880 0.00E+01 ND 8.00E+01 94% 8.98E+02	2	NA NA NA NA NA NA NA NA NA NA
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Fluorobenzene (Surrogate)	9:35 9:80 9:88 9:90 10:03	9.03E+05 8.33E+05 3.03E+04 1.91E+06 1.70E+04	0.00E+00 ND 0.00E+00 ND 1.53E+02 1101 0.00E+00 ND 7.00E+01 82% 3.55E+03 92%	0.00E+00 ND 0.00E+00 ND -50 0.00E+00 ND -50 ND -50 113% 0.00E+01 113% 0.00E+00 ND -50 2.88E+03 88%	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND 9.40E+01 111% 9.53E+02 103 3.67E+03 112%	0.00E+00 ND 0.00E+00 ND 5.50E+01 91 0.00E+00 ND 8.40E+01 99% 2.87E+03 155 3.12E+03 95%	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<80 0.00E+00 ND 8.40E+01 99% 8.21E+02 142 3.30E+03 101%	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND=80 0.00E+00 ND 8.00E+01 94% 8.98E+02 3.13E+03 96%	25 25 25 25 25 25 25 25 25 25 25 25 25 2	NA N
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Fluorobenzene (Surrogate) Trichloroethene	9:35 9:80 9:88 9:90 10:03 10:60 11:82	9.03E+05 8.33E+05 3.03E+04 1.91E+06 1.70E+04 9.23E+05 6.54E+05	0.00E+00 ND 0.00E+00 ND 1.53E+02 101 0.00E+00 ND 7.00E+01 82% 3.55E+03 77 3.01E+03 92% 1.55E+02	0.00E+00 ND 0.00E+00 ND ≤50 0.00E+00 ND ≤50 ND 9.60E+01 113% 0.00E+00 ND ≤50 2.88E+03 8.8% 0.00E+00 ND ≤50	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND 9.40E+01 111% 9.53E+02 103 3.67E+03 112% 4.00E+01	0.00E+00 ND 0.00E+00 ND 5.50E+01 91 0.00E+00 ND 8.40E+01 99% 2.87E+03 155 3.12E+03 95% 5.60E+01	0.00E+00 ND 0.00E+00 ND=80 0.00E+00 ND=80 ND 8.40E+01 99% 8.21E+02 142 3.30E+03 101% 0.00E+00 ND=80	0.00E+00 ND 0.00E+00 ND-880 0.00E+00 ND 8.00E+01 94% 8.98E+02 156 3.13E+03 96% 0.00E+00 ND-880	555555555555555555555555555555555555555	NA N
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Fluorobenzene (Surrogate) Trichloroethene cis-1,3-Dichloropropene (Surrogate)	9:35 9:80 9:88 9:90 10:03 10:60 11:82	9.03E+05 8.33E+05 3.03E+04 1.91E+06 1.70E+04 9.23E+05 6.54E+05	0.00E+00 ND 0.00E+00 ND 1.53E+02 101 0.00E+00 ND 7.00E+01 82% 3.55E+03 77 3.01E+03 92% 1.55E+02 112 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND -50 0.00E+00 ND -50 ND -80E+01 113% 0.00E+00 ND -288E+03 88% 0.00E+00 ND<50 0.00E+00 ND<50	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND 9.40E+01 111% 9.53E+02 103 3.67E+03 112% 4.00E+01 1444 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 5.50E+01 91 0.00E+00 ND 8.40E+01 99% 2.87E+03 155 3.12E+03 95% 5.60E+01 101 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND-60 ND-60 ND-60 ND 8.40E+01 99% 8.21E+02 142 3.30E+03 101% 0.00E+00 ND-60 ND-60 ND-60	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 8.00E+01 94% 8.98E+02 156 3.13E+03 96% 0.00E+00 ND=80 0.00E+00 ND	£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	NA N
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Fluorobenzene (Surrogate) Trichloroethene cis-1,3-Dichloropropene (Surrogate) Toluene 1,1,2-Trichlorethane	9:35 9:80 9:88 9:90 10:03 10:60 11:82 12:38 12:85	9.03E+05 8.33E+05 3.03E+04 1.91E+06 1.70E+04 9.23E+05 6.54E+05 2.77E+04 8.98E+05	0.00E+00 ND 0.00E+00 ND 1.53E+02 10.1 0.00E+00 ND 7.00E+01 82% 3.55E+03 77 3.01E+03 92% 1.55E+02 112 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND=50 0.00E+00 ND=50 0.00E+00 ND=50 2.88E+03 88% 0.00E+00 ND<50 0.00E+00 ND=50 0.00E+00	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND 9.40E+01 111% 9.53E+02 103 3.67E+03 112% 4.00E+01 1.44 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 5.50E+01 91 0.00E+00 ND 8.40E+01 99% 2.87E+03 95% 5.60E+01 101 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND<80 0.00E+00 ND 8.40E+01 99% 8.21E+02 142 3.30E+03 101% 0.00E+00 ND<80 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND=80 0.00E+01 94% 8.98E+02 156 3.13E+03 96% 0.00E+00 ND=80 0.00E+00 ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NA N
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Fluorobenzene (Surrogate) Trichloroethene cis-1,3-Dichloropropene (Surrogate) Toluene 1,1,2-Trichlorethane Tetrachloroethene	9:35 9:80 9:88 9:90 10:03 10:60 11:82 12:38 12:38	9.03E+05 8.33E+04 1.91E+06 1.70E+04 9.23E+05 6.54E+05 2.77E+04 8.98E+05 9.24E+05	0.00E+00 ND 0.00E+00 ND 1.53E+02 1101 0.00E+00 ND 7.00E+01 82% 3.55E+03 77 3.01E+03 92% 1.55E+02 1112 0.00E+00 ND 4.37E+04 945	0.00E+00 ND 0.00E+00 ND-50 0.00E+00 ND-50 0.00E+00 ND-50 113% 0.00E+00 ND-50 2.88E+03 88% 0.00E+00 ND-50 0.00E+00 ND-50 0.00E+00 ND-50 0.00E+00	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND 9.40E+01 111% 9.53E+02 103 3.67E+03 112% 4.00E+00 ND ND	0.00E+00 ND 0.00E+00 ND 5.50E+01 991 0.00E+00 ND 8.40E+01 99% 2.87E+03 95% 5.60E+01 101 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND=80 0.00E+00 ND 8.40E+01 99% 8.21E+02 142 3.30E+03 101% 0.00E+00 ND<80 0.00E+00 ND 1.12E+04 1,950 0.00E+00	0.00E+00 ND 0.00E+00 ND ND 0.00E+00 ND ND <	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NA N
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Fluorobenzene (Surrogate) Trichloroethene cis-1,3-Dichloropropene (Surrogate) Toluene 1,1,2-Trichlorethane Tetrachloroethene 1,1,1,2-Tetrachloroethane	9:35 9:80 9:88 9:90 10:03 10:60 11:82 12:38 12:85 13:43 14:80	9.03E+05 8.33E+04 1.91E+06 1.70E+04 9.23E+05 6.54E+05 2.77E+04 8.98E+05 9.51E+05	0.00E+00 ND 0.00E+00 ND 1.53E+02 1101 0.00E+00 ND 7.00E+01 82% 3.55E+03 77 3.01E+03 92% 1.55E+02 112 0.00E+00 ND 4.37E+04 945 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND ≤50 0.00E+00 ND ≤50 0.00E+00 ND ≤50 2.88E+03 8.8% 0.00E+00 ND <50 0.00E+00 ND <50 0.00E+00 ND <50 0.00E+00 ND <50 0.00E+00 ND <50 0.00E+00 ND <50 0.00E+00 ND <50 0.00E+00	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND 9.40E+01 111% 9.53E+02 103 3.67E+03 3.67E+03 112% 4.00E+00 ND 1.08E+04 1,170 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 5.50E+01 991 0.00E+00 ND 8.40E+01 99% 2.87E+03 155 3.12E+03 95% 5.60E+01 101 0.00E+00 ND 3.80E+04 2.2060 ND	0.00E+00 ND 0.00E+00 ND-600 ND	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND-880 0.00E+01 94% 8.98E+02 156 3.13E+03 96% 0.00E+00 ND-880 0.00E+00 ND 1.01E+04 1,750 0.00E+00 ND 0.00E+00	£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	NA N
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Fluorobenzene (Surrogate) Trichloroethene cis-1,3-Dichloropropene (Surrogate) Toluene 1,1,2-Trichlorethane Tetrachloroethene	9:35 9:80 9:88 9:90 10:03 10:60 11:82 12:38 12:38 12:85 13:43 14:80 14:77	9.03E+05 8.33E+04 1.91E+06 1.70E+04 9.23E+05 6.54E+05 2.77E+04 8.98E+05 9.24E+05 9.51E+05 2.33E+04	0.00E+00 ND 0.00E+00 ND 1.53E+02 1101 0.00E+00 ND 7.00E+01 82% 3.55E+03 777 3.01E+03 92% 1.55E+02 112 0.00E+00 ND 4.37E+04 945 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND-550 0.00E+00 ND 9.60E+01 113% 0.00E+00 ND-50 2.88E+03 88% 0.00E+00 ND-50 0.00E+00 ND-50 0.00E+00 ND 1.87E+03 202 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND 9.40E+01 111% 9.53E+02 103 3.67E+03 112% 4.00E+01 144 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 5.50E+01 91 0.00E+00 ND 8.40E+01 99% 2.87E+03 95% 5.60E+01 101 0.00E+00 ND 3.80E+04 2.1060	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 8.40E+01 99% 8.21E+02 142 3.30E+03 101% 0.00E+00 ND ND 1.12E+04 1.950 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND=80 0.00E+00 ND 8.00E+01 94% 8.98E+02 156 3.13E+03 96% 0.00E+00 ND=80 0.00E+00 ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NA N
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Fluorobenzene (Surrogate) Trichloroethene cis-1,3-Dichloropropene (Surrogate) Toluene 1,1,2-Trichlorethane Tetrachloroethene 1,1,1,2-Tetrachloroethane	9:35 9:80 9:88 9:90 10:03 10:60 11:82 12:38 12:38 12:85 13:43 14:80 14:77	9.03E+05 8.33E+04 1.91E+06 1.70E+04 9.23E+05 6.54E+05 2.77E+04 8.98E+05 9.51E+05	0.00E+00 ND 0.00E+00 ND 1.53E+02 1101 0.00E+00 ND 7.00E+01 82% 3.55E+03 92% 1.55E+03 92% 1.55E+02 1112 0.00E+00 ND 4.37E+04 945 0.00E+00 ND 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND-50 0.00E+00 ND-50 0.00E+00 ND-50 113% 0.00E+00 ND-50 0.00E+00 ND-50 0.00E+00 ND-50 0.00E+00 ND-50 0.00E+00 ND-50 ND-50 0.00E+00 ND-00E+00 ND-00E+00 ND-00E+00 ND-00E+00 ND-00E+00 ND-00E+00 ND-00E+00	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND 9.40E+01 111% 9.53E+02 103 3.67E+03 112% 4.00E+00 ND 1.08E+04 1,170 0.00E+00 ND 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 5.50E+01 91 0.00E+00 ND 8.40E+01 99% 2.87E+03 95% 5.60E+01 101 0.00E+00 ND 3.80E+04 2.060 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND ND≤80 0.00E+00 ND≤80 0.00E+00 ND 8.40E+01 99% 8.21E+02 142 3.30E+03 101% 0.00E+00 ND 80 0.00E+00 ND 1.12E+04 1,950 0.00E+00 ND ND 0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 0.00E+00	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND>80 0.00E+00 ND 8.00E+01 94% 8.98E+02 156 0.00E+00 ND>80 0.00E+00 ND 1.01E+04 1,750 0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 0.00E+00 ND	255555555555555555555555555555555555555	NA N
1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Fluorobenzene (Surrogate) Trichloroethene cis-1,3-Dichloropropene (Surrogate) Toluene 1,1,2-Trichlorethane Tetrachloroethene 1,1,1,2-Tetrachloroethane Ethylbenzene	9:35 9:80 9:88 9:90 10:03 10:60 11:82 12:38 12:85 13:43 14:80 14:77	9.03E+05 8.33E+04 1.91E+06 1.70E+04 9.23E+05 6.54E+05 2.77E+04 8.98E+05 9.24E+05 9.51E+05 2.33E+04	0.00E+00 ND 0.00E+00 ND 1.53E+02 1101 0.00E+00 ND 7.00E+01 82% 3.55E+03 92% 1.55E+03 92% 1.55E+02 1112 0.00E+00 ND 4.37E+04 945 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND*50 0.00E+00 ND*50 0.00E+00 ND*50 0.00E+00 ND<50 0.00E+00 ND<50 0.00E+00 ND 1.87E+03 202 0.00E+00 ND 1.87E+03 202 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 5.70E+01 188 0.00E+00 ND 9.40E+01 111% 9.53E+02 103 3.67E+03 112% 4.00E+00 ND 1.08E+04 1,170 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 5.50E+01 91 0.00E+00 ND 8.40E+01 99% 2.87E+03 155 3.12E+03 95% 5.60E+01 101 0.00E+00 ND 3.80E+04 2.060 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 8.40E+01 99% 8.21E+02 142 3.30E+03 101% 0.00E+00 ND 8.00E+00 ND 1.12E+04 1,950 0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 0.00E+00 ND 0.00E+00 ND	0.00E+00 ND 0.00E+00 ND 0.00E+00 ND=80 0.00E+01 94% 8.98E+02 156 0.00E+00 ND=80 0.00E+00 ND 1.01E+04 1.750 0.00E+00 ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NA N

Concentrations reported in micrograms per liter (µg/L)

ND = Not detected

ND< = Not detected above the reported limit of quantitation

RT = Retention time

μl = Microliter

ml = Milliliter

in. Hg = Inches of mercury

ARF = Average response factor

* = Exceeds quantation range

NA = Not Analyzed

3/14/97

TABLE B.1

HALOGENATED AND AROMATIC HYDROCARBONS FIELD ANALYSES RESULTS FOR SOIL GAS SAMPLES SITE LOCATED AT 10643 SOUTH NORWALK BOULEVARD, SANTA FE SPRINGS, CALIFORNIA 25-TARGET COMPOUND LIST

PID/ELCD #2 - 3/10/97			- ZUTIA						ELB.	42 44 DEC 22 DE
SAMPLE ID			\$G10-25	I SG10-25	SG11-25	SG9-25	NA NA	l na	NA NA	NA
DATE			3/10/97	3/10/97	3/10/97	3/10/97	NA NA	NA NA	NA NA	NA NA
TIME			15:09	15:27	15:44	16:03	NA NA	NA NA	NA NA	NA NA
INJECTION VOLUME (µI)			100	20	25	25	NA NA	NA NA	NA NA	NA NA
PURGE VOLUME (ml)	-		500	500	500	500	NA NA	NA NA	NA NA	NA NA
VACUUM (in. Hg)			ND	ND	ND	ND	NA NA	NA NA	NA NA	NA NA
DILUTION FACTOR			5	25	20	20	NA NA	NA	NA NA	NA.
REPORTABLE LIMIT (µg/L)			5	25	20	20	NA NA	NA NA	NA NA	NA NA
COMMENTS	1	ı	 	1					1.5.	1.0.
	RT	ARF	·							
Philadelia na differenza na sala ana a	5.00	4.055.05	0.00E+00	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	NA NA	NA NA	NA NA	NA NA
Dichlorodifluoromethane	5:00	1.85E+05	ND 1.02E+03	0.00E+00	0.00E+00	0.00E+00	NA NA	NA NA	NA NA	NA NA
Vinyl chloride	5:27	3,55E+05		ND<25	ND<20	I NO<20	NA	NA.	NA NA	NA
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA	NA NA	NA NA	NA
Chloroethane	5:78	1.16E+05	ND	ND	ND	ND	NA .	NA NA	NA	NA
		0.005 - 05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA	NA NA	NA NA	NA NA
Trichlorofluoromethane	6:08	6.82E+05	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloro-trifluoroethane	6:50	3.72E+05	ND ND	ND ND	ND ND	ND .	NA NA	NA NA	NA NA	NA NA
1,1,2-1 ttornoto-unidoroca idito	0.00	0.722.00	5.60E+01	0.00E+00	0.00E+00	0.00E+00	NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethene	6:80	6.26E+05	ND<5	ND	ND	ND	NA	NA .	NA NA	NA
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA	NA NA	NA .	NA .
Methylene chloride	7:27	6.85E+05	ND	ND	ND	ND	NA	NA	NA	NA ***
	Lagran		1.38E+03	1.12E+02	0.00E+00	0.00E+00 ND≪20	NA NA	NA NA	NA NA	NA NA
trans-1,2-Dichloroethene	7;58	5,65E+05	-24 0.00E+00	ND<25 0.00E+00	ND+20 0.00E+00	0.00E+00	NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethane	8:02	8.11E+05	ND	ND ND	ND	ND	NA.	NA NA	NA NA	NA
	<u> </u>		6.69E+03	6.04E+02	5.36E+02	0.00E+00	NA	NA .	NA NA	NA.
cls-1,2-Dichloroethene	8:68	8:18E+05	82	37_	25	ND<20	NA	NA	NA NA	NA
		4.445.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA NA	NA NA	NA NA	NA NA
Chloroform	8:87	1.14E+06	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	NA NA	NA NA	NA NA	NA NA
1,1,1-Trichloroethane	9:35	9.03E+05	ND	ND ND	ND	ND ND	NA	NA NA	NA NA	NA.
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	ŊA	NA .	NA	NA.
Carbon tetrachloride	9:80	8.33E+05	ND	ND	ND	ND	NA	NA .	NA NA	NA NA
Benzene	9:88	3.03E+04	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	NA NA	NA NA	NA NA	NA NA
Delizelie	9.00	3.U3ETU4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA NA	NA NA	NA NA	NA NA
1,2-Dichloroethane	9:90	1.91E+06	ND	ND	ND	ND	NA	NA	NA NA	NA
			6.90E+01	8.20E+01	6.30E+01	7.30E+01	NA .	NA.	NA	NA
Fluorobenzene (Surrogate)	10:03	1.70E+04	81%	96%	74%	86%	NA	NA	NA	NA
	anen	0000 NE	1.07E+04	8.45E+02 46	1.01E+03	2.08E+02 ND<20	NA NA	NA NA	NA NA	NA NA
Trichloroethene	10.00	849LTU3	3.39E+03	3.77E+03	3.05E+03	3.20E+03	NA NA	NA NA	NÃ -	NA.
cis-1,3-Dichloropropene (Surrogate)	11:82	6.54E+05	104%	115%	93%	98%	NA	NA NA	NA I	NA
			5.62E+02	4.80E+01	1.78E+02	8.50E+01	NA NA	NA.	NA	NA.
Тоцене	12:38	277E#04	203		257	123 0.00E+00	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichlorethane	12:85	8.98E+05	0.00E+00 ND	0.00E+00 ND	0.00E+00 ND	ND	NA NA	NA NA	NA NA	NA.
-1-1- transmissing			5.03E+04	9.84E+03	8.49E+03	4.93E+03	NA NA	NA NA	NA NA	NA
Tetrachloroethene	13:43	9.24E+05	545 *	533	368	213	NA	NA	NA NA	NA
44407		0.545 : 05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA NA	NA NA	NA NA	NA NA
1,1,1,2-Tetrachloroethane	14:80	9.51E+05	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	ND 0.00E+00	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	14:77	2,33E+04	ND<5	ND<25	ND<20	ND<20	NA NA	NA NA	NA NA	NA
		111111111111111111111111111111111111111	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA NA	NA .	NA NA	NA NA
meta and para-Xylene	14:88	6,61E+04	ND<5	ND<25	ND<20	-ND<20	NA NA	NA NA	NA NA	NA NA
ortho-Xylene	15-68	2.29E+04	0.00E+00 ND<5	0.00E+00 ND<25	0.00E+00 ND<20	0.00E+00 ND<20	NA NA	NA NA	NA NA	NA NA
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	NA NA	NÃ.	NA NA	NA NA
1,1,2,2-Tetrachloroethane	16:57	8.70E+05	ND	ND	ND	ND	NA	NA	NA	NA
			· · · · · · · · · · · · · · · · · · ·							

Concentrations reported in micrograms per liter (µg/L)

ND = not detected

ND< = not detected above the reported limit of quantitation

RT = retention time

μl = microliter ml = milliliter

in. Hg = inches of mercury

ARF = average response factor
* = exceeds quantitation range

NA = Not Analyzed

3/10/97

TABLE B-2 QUALITY ASSURANCE/QUALITY CONTROL REPORT

SUBJECT SITE CALIFORNIA

	3/(0/87/													F LE:1218E	:40 0
	TARGET			·	Fe	bruary 18	, 1997					Ма	rch 10, 1	997	
	COMPOUNDS		Т	HREE-PO	INT CALIE	BRATION			LCS		MI	D-POII	NT	LAST	RUN
	STANDARD CONC. (μg/L)		5000	5000	5000			5000	l	BLANK	5000		BLANK	5000	
1	INJECTION VOLUME(μL)		0.50	1.00	2.00		l	1.00		500	1.00		500	1.00	
	COMPOUND/WEIGHT(μg) Dichlorodifluoromethane	5:00	0.0025	0.0050 859	0.0100 1885	ARF	%RSD	0.0050 997	RPD		0.0050	RPD	<u> </u>	0.0050	RPD
	CF	3.00	1.94E+05	1.72E+05	1.89E+05	1.85E+05	6	1.99E+05	8	ND	0.00E+00	NA.	ND	0.00E+00	NA
•	Vinyi chioride	5:27	1037	1737	3026			1665			1329			0	
1	CF Chloroethane	5:78	4.15E+05 380	3.47E+05 552	3.03E+05 858	3.55E+05	16	3.33E+05 435	-6	ND	2.66E+05	-25	ND	0.00E+00	NA
ı	CF	3.76	1.52E+05	1.10E+05	8.58E+04	1.16E+05	29	8.70E+04	-25	ND	0.00€+00	NA	ND	0.00E+00	NA
	Trichlorofluoromethane	6:08	1874	3417	6137			3697						0	
	CF 1,1,2-Trichloro-triffuoroethane	6:50	7.50E+05 1009	6.83E+05 1870	6.14E+05 3395	6.82E+05	10	7.39E+05 2058	8	ND	0.00E+00	NA	ND	0.00E+00	NA
	CF	6.50	4.04E+05	3.74E+05	3.40E+05	3.72E+05	9	4.12E+05	11	ND	0.00E+00	NA	ND	0.00E+00	NA NA
ı	1,1-Dichloroethene	6:80	1755	3049	5648	_ = = = _ = _ = _		3357			2959			0	
	CF	7.07	7.02E+05	6.10E+05	5.65E+05	6.26E+05	11	6.71E+05	7	ND	5.92E+05	-5	ND	0.00E+00	NA
	Methylene chloride CF	7:27	1918 7.67E+05	3366 6.73E+05	6138 6.14E+05	6.85E+05	11	3737 7.47E+05	9	ND	0.00E+00	NA	ND	0.00E+00	NA
	trans-1,2-Dichloroethene	7:58	1567	2747	5184	0.002.00		3129			2855	.,,,	113	0	
1	CF		6.27E+05	5.49E+05	5.18E+05	5.65E+05	10	6.26E+05	11	ND	5.71E+05	1	ND	0.00E+00	NA
I	1,1-Dichloroethane CF	8:02	2272 9.09E+05	3786 7.57E+05	7662 7.66E+05	8.11E+05	10	4188 8,38E+05	3	ND	4207 8.41E+05	4	ND	0.00E+00	NA
	cis-1,2-Dichloroethene	8:68	2307	3802	7.002+03	6.11E703		4482	-	110	3961	-	, NO	0.002400	144
1	CF		9.23E+05	7.60E+05	7.71E+05	8.18E+05	11	8.96E+05	10	ND	7.92E+05	-3	ND	0.00E+00	NA
	Chloroform	8:87	3177	5252	11010 1.10E+06	4.45.00	10	6212	9	ND.	0.000	NA	ND	0 0.00E+00	NA
1	1,1,1-Trichloroethane	9:35	1.27E+06 2526	1.05E+06 4163	8665	1.14E+06	10	1.24E+06 4844	9	ND	0.00E+00 4680	NA.	- NU	0.002+00	
۱	CF		1.01E+06	8.33E+05	8.67E+05	9.03E+05	10	9.69E+05	7	ND	9.36E+05	4	ND	0.00E+00	NA
	Carbon tetrachloride	9:80	2024	3980	8927			4010						0]
ŀ	CF Benzene (PID)	9:88	8.10E+05 77	7.96E+05	8.93E+05 316	8.33E+05	6	8.02E+05 139	-4	ND	0.00E+00 161	NA.	ND	0.00E+00	NA
	CF	0.00	3.08E+04	2.84E+04	3.16E+04	3.03E+04	6	2.78E+04	-8	ND	3.22E+04	6	ND	0.00E+00	NA
	1,2-Dichloroethane	9:90	5667	8497	17712			8163			10493			0	
ŀ	CF Fluorobenzene (Surrogate)	10:03	2.27E+06 40	1.70E+06 83	1.77E+06 184	1.91E+06	16	1.63E+06 0	-15	ND	2.10E+06	10	ND	0.00E+00 0	NA
	CF	10.00	1.60E+04	1.66E+04	1.84E+04	1.70E+04	7	0.00E+00	NA	ND	0.00E+00	NA	ND	0.00E+00	NA
1	Trichloroethene	10:60	2600	4242	8805			5064			4783			0	
ŀ	CF cls-1,3-Dichloropropene (Surrogate)	11.82	1.04E+06 1540	8.48E+05 3263	8.81E+05 6937	9.23E+05	11	1.01E+06	10	ND	9.57E+05	4	ND	0.00E+00	NA NA
۱	CF CF	11.02	6.16E+05	6.53E+05	6.94E+05	6.54E+05	6	0.00E+00	NA	ND	0.00E+00	NA	ND	0.00E+00	NA
1	Toluene (PID)	12:38	67	133	297			133			147			0	
ŀ	CF 1,1,2-Trichioroethane	12:85	2.68E+04 2479	2.66E+04 4085	2.97E+04 8839	2.77E+04	6	2.66E+04 4778	-4	ND	2.94E+04 4611	6	ND	0.00E+00	NA.
ı	CF	12.60	9.92E+05	8.17E+05	8.84E+05	8.98E+05	10	9.56E+05	6	מא	9.22E+05	3	ND	0.00E+00	NA
ı	Tetrachloroethene	13:43	2542	4258	9022			4711			4364			0	
ŀ	CF	4 4:00	1.02E+06	8.52E+05		9.24E+05	9	9.42E+05	2	ND	8.73E+05	-5	ND	0.00E+00	NA.
۱	1,1,1,2-Tetrachloroethane CF	14:80	2715 1.09E+06	4194 8.39E+05	9296 9.30E+05	9.51E+05	13	4848 9.70E+05	2	ND	0.00E+00	NA	ND	0.00E+00	NA
ı	Ethylbenzene (PID)	14:77	48	124	259			108						0	
ŀ	CF (DIO)	44.55	1.92E+04	2.48E+04	2.59E+04	2.33E+04	15	2.16E+04	-7	ND	0.00E+00	NA	ND	0.00E+00	NA
	m,p-Xylene (PID) CF	14:88	159 6.36E+04	317 6.34E+04	712 7.12E+04	6.61E+04	7	329 6.58E+04	0	ND	353 7.06E+04	7	ND	0.00E+00	NA
ľ	o-Xylene (PID)	15:68	57	99	261	J.012104		120	Ť	-,,,,	121			0	
L	CF	72	2.28E+04	1.98E+04	2.61E+04	2.29E+04	14	2.40E+04	5	ND	2.42E+04	6	ND	0.00E+00	_NA
	1,1,2,2-Tetrachloroethane CF	16:57	2329 9.32E+05	3992 7 98E+05	8797 8.80E+05	8 70E+05	8	4138 8.28E+05	-5	ND	0.00E+00	NA	ND	0.00E+00	NA
Ľ			₩.₩₽	7.805703	0.00€₹03	U. / UETUJ		U.ZUETU3		וייי	J.00ET00	110		J.002.100	

RT = Retention Time CF = Calibration Factor

PID = Photo-ionization Detector

μg/L = Micrograms per Liter

μL = Microliters

μg = Microgram

ARF = Average Response Factor

RPD = Relative Percent Difference

LCS = Laboratory Control Sample

ND = Not Detected

NA = Not Applicable

TABLE B-2 QUALITY ASSURANCE/QUALITY CONTROL REPORT SUBJECT SITE, CALIFORNIA

	MEVER III III III III III III III III III I													alleacht.	COACC
1	TARGET				Fe	bruary 18	, 1997					Ma	rch 14, 1	997	
I	COMPOUNDS		Т	HREE-PO	INT CALIE	BRATION			LCS		MII	D-POI	דא	LAST F	RUN
١	STANDARD CONC. (µg/L)		5000	5000	5000			5000		BLANK	5000		BLANK	5000	
۱	INJECTION VOLUME(µL)	RT	0.50	1.00 0.0050	2.00 0.0100	ARF	%RSD	1.00 0.0050	RPD	500	1.00 0.0050	RPD	500	0.0050	RPD
I	COMPOUND/WEIGHT(μg) Dichlorodifluoromethane	5:00	485	859	1885	AKF	MASU	997	KFD		0.0050	KFD		0.0000	
	CF		1.94E+05	1.72E+05	1.89E+05	1.85E+05	6	1.99E+05	8	ND	0.00E+00	NA	ND	0.00E+00	NA.
١	Vinyi chloride	5:27	1037	1737	3026			1665			1361			0	ll
	CF Chloroethane	5:78	4.15E+05 380	3.47E+05 552	3.03E+05 858	3.55E+05	16	3.33E+05 435	-6	ND	2.72E+05	-23	ND	0.00E+00	NA NA
ı	CF	0.70	1.52E+05	1.10E+05	8.58E+04	1.16E+05	29	8.70E+04	-25	ND	0.00E+00	NA	ND	0.00E+00	NA
	Trichlorofluoromethane	6:08	1874	3417	6137			3697						0	
ľ	CF 1.1.2-Trichloro-triffuoroethane	6:50	7.50E+05 1009	6.83E+05 1870	6.14E+05 3395	6.82E+05	10	7.39E+05 2058	8	ND	0.00E+00	NA	ND	0.00E+00	NA NA
	CF		4.04E+05	3.74E+05	3.40E+05	3.72E+05	9	4.12E+05	11	ND _	0.00E+00	NA	ND	0.00E+00	NA
	1,1-Dichloroethene	6:80	1755	3049	5648			3357			2767			0	
1	CF Methylene chloride	7:27	7.02E+05 1918	6.10E+05 3366	5.65E+05 6138	6.26E+05	11	6.71E+05 3737	7	ND	5.53E+05	-12	ND	0.00E+00	NA
	CF	'.2'	7.67E+05	6.73E+05	6.14E+05	6.85E+05	11		9	ND	0.00E+00	NA	ND_	0.00E+00	NA
	trans-1,2-Dichloroethene	7:58	1567	2747	5184			3129			2536			0	
١	CF	8:00	6.27E+05	5.49E+05 3786	5.18E+05 7662	5.65E+05	10	6.26E+05	11	ND_	5.07E+05 4054	-10	ND	0.00E+00	NA.
I	1,1-Dichloroethane CF	8:02	2272 9.09E+05	7.57E+05	7.66E+05	8.11E+05	10	4188 8.38E+05	3	ND	8.11E+05	0	ND	0.00E+00	NA NA
	cis-1,2-Dichloroethene	8:68	2307	3802	7713	<u> </u>		4482			3761			0	
۱	CF		9.23E+05	7.60E+05	7.71E+05	8.18E+05	11	8.96E+05	10	ND	7.52E+05	-8	ND	0.00E+00	NA
ı	Chloroform CF	8:87	3177 1.27E+06	5252 1.05E+06	11010 1.10E+06	1,14E+06	10	6212 1.24E+06	9	ND	0.00€+00	NA	ND	0.00E+00	NA
	1,1,1-Trichloroethane	9:35	2526	4163	8665	1.112100	,,,	4844			4516	1 1 1 1		G	''
	CF		1.01E+06	8.33E+05	8.67E+05	9.03E+05	10	9.69E+05	7	ND	9.03E+05	0	ND	0.00E+00	NA
	Carbon tetrachioride CF	9:80	2024 8.10E+05	3980 7.96E+05	8927 8.93E+05	8,33E+05	6	4010 8.02E+05	-4	ND	0.00E+00	NA	ND	0.00E+00	NA NA
	Benzene (PID)	9:88	77	142	316	0.00E100	ı	139		110	163	11/2		0	 ```
	CF		3.08E+04	2.84E+04	3.16E+04	3.03E+04	6	2.78E+04	-8	ND	3.26E+04	8	ND	0.00E+00	NA
1	1,2-Dichloroethane CF	9:90	5667 2.27E+06	8497 1.70E+06	17712 1.77E+06	1.91E+06	16	8163 1.63E+06	-15	ND	9222 1.84E+06	-4	ND	0.00E+00	NA NA
	Fluorobenzene (Surrogate)	10:03	40	83	184	1.912+00	10	0	-13		1.042700		IND	0.002.400	- <u>```</u>
	CF		1.60E+04	1.66E+04	1.84E+04	1.70E+04	7	0.00E+00	NA	ND	0.00E+00	NA	ND	0.00E+00	NA
ļ	Trichloroethene	10:60	2600	4242	8805	0.035.05		5064	10	ND	3918	-15	ND	0	NA NA
	CF cis-1,3-Dichloropropene (Surrogate)	11:82	1.04E+06 1540	8.48E+05 3263	8.81E+05 6937	9.23E+05	11	1.01E+06 0	10	IND	7.84E+05	-10	עט –	0.00E+00 0	- <u>~~</u>
	CF		6.16E+05	6.53E+05	6.94E+05	6.54E+05	6	0.00E+00	NA	מא	0.00E+00	NA	ND	0.00E+00	NA
۱	Toluene (PID)	12:38	67	133	297	2.77E+04	آي	133	-4	ND	145	5	ND	0 0.00E+00	NA.
	CF 1,1,2-Trichloroethane	12:85	2.68E+04 2479	2.66E+04 4085	2.97E+04 8839	2.11E+U4	6	2.66E+04 4778	4	עט	2.90E+04 3927	5		0.002+00	-'*
	CF		9.92E+05		8.84E+05	8.98E+05	10	1	6	ND	7.85E+05	-12	ND	0.00E+00	NA
Ž	Tetrachioroethene	13:43	2542	4258	9022	0.045.05		4711			4041	40	ND	0 005.00	
	CF 1,1,1,2-Tetrachloroethane	14:80	1.02E+06 2715	8.52E+05 4194	9.02E+05 9296	9.24E+05	9	9.42E+05 4848	2	ND	8.08E+05	-12	ND	0.00E+00 0	NA NA
	CF		1.09E+06		9.30E+05	9.51E+05	13	9.70E+05	2	ND	0.00E+00	NA	ND	0.00E+00	NA
	Ethylbenzene (PID)	14:77	48	124	259			108			0.005.00		N _I	0 005.00	
1	CF m,p-Xylene (PID)	14:88	1.92E+04 159	2.48E+04 317	2.59E+04 712	2.33E+04	15	2.16E+04 329	-7	ND	0.00E+00 320	NA	ND	0.00E+00 0	NA NA
	CF	17.00	6.36E+04		7.12E+04	6.61E+04	7	6.58E+04	0	ND _	6.40E+04	-3	ND _	0.00E+00	NA
	o-Xylene (PID)	15:68	57	99	261			120			118	_		0	
۱	CF	16:57	2.28E+04	1.98E+04	2.61E+04 8797	2.29E+04	14	2.40E+04 4138	5	ND	2.36E+04	3	ND	0.00E+00 0	NA NA
	1,1,2,2-Tetrachloroethane CF	16:57	2329 9.32E+05	3992 7.98E+05	8.80E+05	8.70E+05	8	8.28E+05	-5	ND	0.00E+00	ΝA	ND	0.00E+00	NA
r			لسنوت												

RT = Retention Time

CF = Calibration Factor

PID = Photo-ionization Detector

μg/L = Micrograms per Liter

μL = Microliters

μg = Microgram

ARF = Average Response Factor

RPD = Relative Percent Difference

LCS = Laboratory Control Sample

ND = Not Detected

NA = Not Applicable

APPENDIX B USCS CRITERIA

AGI DATA SHEET 26.1

Unified Soil Classification System

Complied by B. W. Pipkin, University of Southern California

MAJ	IOR DIVISIONS		GROUP SYMBOLS	TYPICAL NAMES
	ν + ₈ ν	5-₩	GW	Well-graded gravels, gravel-sand mixtures, little or no fines.
ED of than ze.	GRAVELS More More than half of coarse fraction is larger than no. 4 sieve	Clean	GP	Poorly graded gravels, gravel-sand mix- tures, little or no fines.
alf alf	P # # # # # # # # # # # # # # # # # # #	fs s	GM	Silty gravels, gravel-sand-silt mixtures.
SE-GRAIN SOILS than half is targer o sieve si		Grave with fros	GC	Clayey gravels, gravel-sand-clay mixtures.
COARSE-GRAINED SOILS More than half of material is larger than no. 200 sieve size.		5 &	sw	Well-graded sands, gravelly sands, little or no fines.
COARS More material no. 200	SANDS More More than half of coarse fraction is smaller than no. 4 sieve	Clean Secrets	SP	Poorly graded sands, gravelly sands, little or no fines.
_	N_ # P # 2 # 2 # 4	Sends with lines	SM	Silty sands, sand-silt mixtures.
		8 ₹ €	sc	Clayey sands, sand-clay mixtures.
40		2	ML	Inorganic sitts and very fine sands, rock flour, sitty or clayey fine sands, or clayey sitts, with slight plasticity.
FINE-GRAINED SOILS More than half of material is smaller than no. 200 sieve size.	SILTS AND CLAYS	Low liquid limit.	CL.	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.
E-GRAINED SOI More than half of naterial is smaller han no. 200 sleve size.	, AND	_	OL	Organic silts and organic silty clays of low plasticity.
F-GR More nateri	SILTS	r di	мн	Inorganic silts, micaceous or diatoma- ceous fine sandy or silty soils, elastic silts.
<u> </u>			СН	Inorganic clays of high plasticity, fat clays.
		High liquid limit.	ЭН	Organic clays of medium to high plasticity, organic silts.
High	Highly organic soils		Pt	Peat and other highly organic silts.

NOTES:

1. Boundary Classification: Soils possessing characteristics of two groups are designated by combinations of group symbols. For example, GW-GC, well-graded gravel-sand mixture with clay binder.

2. All sieve sizes on this chart are U.S. Standard.

3. The terms "silt" and "clay" are used respectively to distinguish materials exhibiting lower plasticity from those with higher plasticity. The minus no. 200 sieve material is silt if the liquid limit and plasticity index plot below the "A" line on the plasticity chart (next page), and is clay if the liquid limit and plasticity index plot above the "A" line on the chart.

4. For a complete description of the Unified Soil Classification System, see "Technical Memorandum No. 3-357," prepared for Office, Chief of Engineers, by Waterways Equipment Station, Vicksburg, Mississippi, March 1953. (See also Data Sheet 17.)

APPENDIX B USCS CRITERIA CONTINENTAL HEAT TREATING SITE ASSESSMENT REPORT

APPENDIX C SIEVE ANALYSES RESULTS FOR SOIL SAMPLES

ANAHEIM TEST LABORATORY

3002s. ORANGE AVENUE SANTA ANA, CALIFORNIA 92707 PHONE (714) 549-7267

EST ENVIRONMENTAL SUPPORT TECH: 23011 MOULTON PARKWAY STE. E-6 LAGUNA HILLS, CA. 92653

ATTN: MICHAEL TYE

Shipper No.

Lab. No. B 1514 1-6

DATE: 4-10-97

P.O. No. VERBAL

Specification:

Material: SOIL

PROJECT: CONTINENTAL HEAT TREATING:

CHT-B1

RESULTS OF SIEVE ANALYSIS TESTING

Percent Passing

SIEVE SIZE	No. 1 @ 10'	No. 2 @ 20'	No. 3 @ 30'	No. 4 @ 40'	No. 5 @ 50'	No. 6 @ 60'
#4	100	100	100	100	100	100
#8	100	97	100	98	100	99
#16	99	95	100	96	100	95
#30	97	94	99	93	. 100	89
#50	86	92	96	88	99	84
#100	68	91	88	78	94	80
#200	51	78	78	64	52	77

RESPECTFULLY SUBMITTED

ANAHEIM TEST LABORATORY

POPPY BRIDGER

APPENDIX D SOIL BORING LOG

SOIL BORING LOG

05/06/97

CHT BORING LOG

ENVIRONMENTAL SUPPORT TECHNOLOGIES, INC. 23011 MOULTON PARKWAY, SUITE E-6 LAGUNA HILLS, CALIFORNIA 92653 (714) 457-9664

PROJECT	T NAME:	Continenta	al Heat Treating			BORING NUMBER: CHT-B1		
PROJECT	T No:	EST1315				BORING LOGGED BY: M. Tye	······································	
DATE:		3/27/97		-		DRILLING CONTRACTOR: Discovery Drilling		
BEGIN DE	RILLING:	8:53 AM				DRILLING METHOD: CME-55 with 10.5-inch O.D. au		
END DRIL	LLING:	12:11 PM		,		SITE LOCATION: 10643 South Norwalk Boulevard, Sa	nta Fe Spring	s, CA.
TIME	DEPTH	BLOW	PERCENT RECOVERY	TOVs (ppm)		LITHOLOGIC DESCRIPTION	USCS SOIL TYPE	LAB SAMPLE
7:40	O'	N/A	N/A	N/A	Retween the	Surface = Concrete, approximately 5-Inches-thick, hand-auger (HA) to 4-feet below grade.	N/A	N/A
7:42	1'	N/A	HA Cuttings	54 ppm as isobutylene		Silty fine sand, brown (10YR 4/3), well-sorted, moist, no odor.	SM	N/A
8:57	5'	21-27-35 (62)	100%	70 ppm as isobutylene		Clayey-silt with fine sand, brown (10YR 4/3), well-sorted very-dense, moist.	SM-ML	EPA 8021
9:10	10'	20-24-45 (69)	100%	56 ppm as isobutylene		Clayey-silt with fine sand, brown (10YR 4/3), well-sorted very-dense, moist.	SM-ML	EPA 8021 SIEVE
9:24	15'	30-40-70 (110)	100%	267 ppm as isobutylene		Silt, light brownish-gray (10YR 6/2), well-sorted, very-dense, moist.	ML	EPA 8021
9:33	20'	27-35-70 (105)	100%	45 ppm as isobutylene		Silty clay, light brownish-gray (10YR 6/2), well-sorted, very-dense, moist.	ML-CL	EPA 8021 SIEVE
9:45	25'	25-25-50 (75)	100%	48 ppm as isobutylene		Silty clay, pale brown (10YR 6/3), well-sorted, very-dense, moist.	ML-CL	EPA 8021
9:58	30'	28-27-55 (82)	100%	114 ppm as isobutylene		Silty clay, pale brown (10YR 6/3), well-sorted, very-dense, moist.	ML-CL	EPA 8021 SIEVE
10:06	35'	19-20-47 (67)	100%	50 ppm as isobutylene		Silty clay, pale brown (10YR 6/3), well-sorted, very-dense, moist.	ML-CL	EPA 8021
10:20	40'	17-19-45 (64)	100%	59 ppm as isobutylene		Silt, brown (10YR 4/3), well-sorted, very-dense, moist.	ML	EPA 8021 SIEVE
10:38	45'	20-22-52 (74)	100%	135 ppm as isobutylene		Silt, brown (10YR 4/3), well-sorted, very-dense, moist.	ML	EPA 8021
11:25	50'	24-27-59 (86)	100%	53 ppm as isobutylene		Silty clay, pale brown (10YR 6/3), well-sorted, very-dense, moist.	ML-CL	EPA 8021 SIEVE

HSA = hollow-stem auger TOV = total organic vapors

LAB = soil sample analyzed by certified laboratory

EPA 8021 = sample analyzed for VOCs

ppm = parts per million

(xx) = sum of last two blow counts

1) USCS Classifications are field derived.

NS = not sampled

USCS = United Soil Classification System

ND = not detected

Archived = soil sample archived at laboratory

N/A = not applicable

SIEVE = sieve analysis performed

2) Color designations are Munsell.

3) Subsurface information from boring logs depict conditions only at specific locations and dates indicated. Soil conditions at other locations may differ from conditions at these locations. Also the conditions at these locations may change with time.

Prepared by Michael Tre

Reviewed by K.A. Thomson

SOIL BORING LOG

05/06/97

CHT BORING LOG (p.2)

ENVIRONMENTAL SUPPORT TECHNOLOGIES, INC. 23011 MOULTON PARKWAY, SUITE E-6 LAGUNA HILLS, CALIFORNIA 92653 (714) 457-9664

PROJECT	NAME:	Continent	al Heat Treating		BORING NUMBER: CHT-B1		
PROJECT		EST1315			BORING LOGGED BY: M. Tye		
DATE:		3/27/97			 DRILLING CONTRACTOR: Discovery Drilling		
BEGIN DF		8:53 AM			 DRILLING METHOD: CME-55 with 10.5-inch O.D. au		
END DRIL	LING:	12:11 PM			 SITE LOCATION: 10643 South Norwalk Boulevard, Sa		
TIME	DEPTH	BLOW COUNTS	PERCENT RECOVERY	TOVs (ppm)	LITHOLOGIC DESCRIPTION	USCS SOIL TYPE	LAB SAMPLE
11:37	55'	20-25-28 (53)	100%	115 ppm as isobutylene	Clayey-silt, grayish-brown (10YR 5/2), well-sorted, very-dense, moist.	ML-CL	EPA 8021
11:56	60'	17-20-42 (62)	100%	25 ppm as isobutylene	Clayey-silt, graylsh-brown (10YR 5/2), well-sorted, very-dense, moist.	ML-CL	EPA 8021 SIEVE
12:08	65'	35-50-100 (150)	100%	19 ppm as isobutylene	Medium sand with silt, gray (10YR 6/1), well-sorted, very-dense, very moist.	SM	EPA 8021
12:11	68'	32-45-80 (125)	100%	15 ppm as isobutylene	Medium sand with silt, gray (10YR 6/1), well-sorted, very-dense, wet. DISCONTINUE DRILLING AND SOIL SAMPLING.	SM	N/A
	<u>-</u>		_		Total depth of boring CHT-B1 approximately 68-feet below grade, commence installation of nested soil gas probes at 60 and 50 feet below grade, and installation		
					of 45-foot-deep vapor extraction well.		
				-			
			=				
_							

HSA = hollow-stem auger TOV = total organic vapors LAB = soil sample analyzed by certified laboratory EPA 8021 = sample analyzed for VOCs ppm = parts per million (xx) = sum of last two blow counts

1) USCS Classifications are field derived.

NS = not sampled USCS = United Soil Classification System ND = not detected Archived = soil sample archived at laboratory

N/A = not applicable

SIEVE = sieve analysis performed

2) Color designations are Munsell.

3) Subsurface information from boring logs depict conditions only at specific locations and dates indicated. Soil conditions at other locations may differ from conditions at these locations. Also the conditions at these locations may change with time.

Prepared by

Kl.A. Thomson

APPENDIX E

LABORATORY ANALYSES REPORTS AND CHAIN-OF-CUSTODY FORM FOR SOIL SAMPLES

Date:

4/4/97

Environmental Support Technologies, Inc.

23011 Moulton Parkway, Suite E-6

Laguna Hills, CA 92653

Attention:

Mr. Kirk Thomson

Client Project Number:

Date Sampled:

Date Samples Received:

Sierra Project No.:

3/27/97

3/28/97

Continental Heat Treating

9703-296

Attached are the results of the chemo-physical analysis of the sample(s) from the project identified above.

The samples were received by Sierra Laboratories, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analysis were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require additional retaining time, please advise us.

Kuhara X Fry U Richard K. Forsyth

Laboratory Director

Reviewed

This report is applicable only to the sample received by the laboratory. The liability of the laboratory is limited to the amount paid for this report. This report is for the exclusive use of the lief to whom it is addressed and upon the condition that the client assumes all liability for the further distribution of the report or its contents.

Environmental Support Technologies, Inc. Date Sampled: 3/27/97 23011 Moulton Parkway, Suite E-6 Date Received: 3/28/97

Laguna Hills, CA 92653 Date Prepared: 4/1/97
Date Analyzed: 4/1/97

Sierra Project No.: 9703-296 Analyst: SM

Client Project ID: Continental Heat Treating

Sample Matrix: Soil Report Date: 4/4/97

HALOGENATED AND AROMATIC VOLATILE ORGANICS EPA METHOD 8021

		Concen	tration, μg/kg		
Client Sample No.:	CHT-B1-5'	CHT-B1-10'	CHT-B1-15'	CHT-B1-20'	Method Detection
Sierra Sample No.:	4563	4564	4565	4566	Limit, μg/kg
COMPOUNDS:					
Benzene	ND	ND	ND	ND	3
Bromobenzene	ND	ND	ND	ND	3
Bromochloromethane	ND	ND	ND	ND	3
Bromodichloromethane	ND	ND	ND	ND	3
Bromofor m	ND	ND	ND	ND	3
Bromomethane	ND	ND	ND	ND	3
n- Butylbenzene	ND	ND	ND	ND	3
sec-Butylbenzene	ND	ND	ND	ND	3
tert-Butylbenzene	ND	ND	ND	ND	3
Carbon tetrachloride	ND	ND	ND	ND	3
Chlorobenzene	ND	ND	ND	ND	3
Chlorodibromomethane	ND	ND	ND	ND	3
Chloroethane	ND	ND	ND	ND	3
Chloroform	ND	ND	ND	ND	3
Chloromethane	ND	ND	ND	ND	3
2-Chlorotoluene	ND	ND	ND	ND	3
4-Chlorotoluene	ND	ND	ND	ND	3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	3
1,2-Dibromoethane	ND	ND	ND	ND	3
Dibromomethane	ND	ND	ND	ND	3
1,2-Dichlorobenzene	ND	ND	ND	ND	3
1,3-Dichlorobenzene	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND	ND	ND	ND	3
Dichlorodifluoromethane	ND	ND	ND	ND	3 3
1,1-Dichloroethane	ND	ND	ND	ND	3

Environmental Support Technologies, Inc.	Date Sampled: 3/27/97
23011 Moulton Parkway, Suite E-6	Date Received: 3/28/97
Laguna Hills, CA 92653	Date Prepared: 4/1/97
	Date Analyzed: 4/1/97
Sierra Project No.: 9703-296	Analyst: SM
Client Project ID: Continental Heat Treating	
Sample Matrix: Soil	Report Date: 4/4/97

		Concentration, µg/kg					
Client Sample No.:	CHT-B1-5'	CHT-B1-10'	CHT-B1-15'	CHT-B1-20'	200000000000000000000000000000000000000		
Sierra Sample No.:	4563	4564	4565	4566	Limit, μg/kg		
COMPOUNDS:							
1,2-Dichloroethane	ND	ND	ND	ND	3		
1,1-Dichloroethene	ND	ND	ND	ND	3		
cis-1,2-Dichloroethene	ND	ND	ND	ND	3		
trans-1,2-Dichloroethene	ND	33	63	57	3		
1,2-Dichloropropane	ND	ND	ND	ND	3		
1,3-Dichloropropane	ND	ND	ND	ND	3		
2,2-Dichloropropane	ND	ND	ND	ND	3		
1,1-Dichloropropene	ND	ND	ND	ND	- 3		
cis-1,3-dichloropropene	ND	ND	ND	ND	3		
trans-1,3-dichloropropene	ND	ND	ND	ND	3		
Ethylbenzene	ND	ND	ND	ND	3		
Hexachlorobutadiene	ND	ND	ND	ND	3		
Isopropylbenzene	ND	ND	ND	ND	3		
p-Isopropyltoluene	ND	ND	ND	ND	3		
Methylene chloride	ND	ND	ND	ND	3		
Naphthalene	ND	ND	ND	ND	3.		
n-Propylbenzene	ND	ND	ND	ND	3		
Styrene	ND	ND	ND	ND	3		
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	3		
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	3		
Tetrachloroethene	40	31	110	42	3		
Toluene	ND	ND	ND	ND	3		
1,2,3-Trichlorobenzene	ND	ND	ND	ND	3		
1,2,4-Trichlorobenzene	ND	ND	ND	ND	3		
1,1,1-Trichloroethane	ND	ND	ND	ND	3		
1,1,2-Trichloroethane	ND	ND	ND	ND	3		

Environmental Support Technologies, Inc. Date Sampled: 3/27/97 23011 Moulton Parkway, Suite E-6 Date Received: 3/28/97 Laguna Hills, CA 92653 Date Prepared: 4/1/97 Date Analyzed: 4/1/97 Sierra Project No.: 9703-296 Analyst: SM Client Project ID: Continental Heat Treating Sample Matrix: Soil Report Date: 4/4/97

EPA METHOD 8021 CONTINUED

		Concentration, μg/kg					
Client Sample No.:	CHT-B1-5'	CHT-B1-10'	CHT-B1-15'	CHT-B1-20'	Method Detection Limit,		
Sierra Sample No.:	4563	4564	4565	4566	μg/kg		
COMPOUNDS:	00000 00000 00000				60.000		
Trichloroethene	20	9.6	17	14	3		
Trichlorofluoromethane	ND	ND	ND	ND	3		
1,2,3-Trichloropropane	ND	ND	ND	ND	3		
1,2,4-Trimethylbenzene	ND	ND	ND	ND	3		
1,3,5-Trimethylbenzene	ND	ND	ND	ND	3		
Vinyl chloride	ND	ND	ND	ND	3		
Total Xylenes	ND	ND	ND	ND	3		
Dilution Factor	1	1	1	1	QC Limits		
% Surrogate Recovery: 1-chloro-2-fluorobenzene	81	81	82	80	30-135		

Quality Assurance/Quality Control Data QC Sample ID: 9703-296-4575										
Compounds	LCS % Rec.	QC Limits	Spike % Rec.	Spike Dup % Rec.	QC Limits	RPD	QC Limits			
1,1 Dichloroethane	102	80-120	102	104	47-132	1.2	0-30			
Carbon Tetrachloride	102	80-120	105	106	43-143	0.5	0-30			
Bromoform	110	80-120	110	108	13-159	2.3	0-30			
Benzene	105	80-120	105	102	39-150	2.4	0-30			
Toluene	105	80-120	105	102	46-148	2.4	0-30			
Ethylbenzene	102	80-120	102	103	32-160	0.5	0-30			

ND means Not Detected

Environmental Support Technologies, Inc.

Date Sampled: 3/27/97

23011 Moulton Parkway, Suite E-6

Date Received: 3/28/97

Laguna Hills, CA 92653

Date Prepared: 4/1/97

Date Analyzed: 4/1/97 Analyst: SM

Sierra Project No.: 9703-296

Client Project ID: Continental Heat Treating

Sample Matrix: Soil Report Date: 4/4/97

HALOGENATED AND AROMATIC VOLATILE ORGANICS EPA METHOD 8021

	Concentration, µg/kg					
Client Sample No.:	CHT-B1-25'	CHT-B1-30'	CHT-B1-35'	CHT-B1-40'	Method Detection Limit,	
Sierra Sample No.:	4567	4568	4569	4570	μg/kg	
COMPOUNDS:						
Benzene	ND	ND	ND	ND	3	
Bromobenzene	ND	ND	ND	ND	3	
Bromochloromethane	ND	ND	ND	ND	3	
Bromodichloromethane	ND	ND	ND	ND	3	
Bromoform	ND	ND	ND	ND	3	
Bromomethane	ND	ND	ND	ND	3	
n- Butylbenzene	ND	ND	ND	ND	3	
sec-Butylbenzene	ND	ND	ND	ND	3	
tert-Butylbenzene	ND	ND	ND	ND	3	
Carbon tetrachloride	ND	ND	ND	ND	3	
Chlorobenzene	ND	ND	ND	ND	3	
Chlorodibromomethane	ND	ND	ND	ND	3	
Chloroethane	ND	ND	ND	ND	3	
Chloroform	ND	ND	ND	ND	3	
Chloromethane	ND	ND	ND	ND	3 3	
2-Chlorotoluene	ND	ND	ND	ND	3	
4-Chlorotoluene	ND	ND	ND	ND	3	
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	3	
1,2-Dibromoethane	ND	ND	ND	ND	3	
Dibromomethane	ND	ND	ND	ND	3	
1,2-Dichlorobenzene	ND	ND	ND	ND	3	
1,3-Dichlorobenzene	ND	ND	ND	ND	3	
1,4-Dichlorobenzene	ND	ND	ND	ND	3	
Dichlorodifluoromethane	ND	ND	ND	ND	3	
1,1-Dichloroethane	ND	ND	ND	ND	3	

Environmental Support	Technologies, Inc.	Date Sampled	l: 3/27/97	
23011 Moulton Parkway	, Suite E-6	Date Received	1: 3/28/97	
Laguna Hills, CA 92653		Date Prepared	d: 4/1/97	
		Date Analyzeo	d: 4/1/97	
Sierra Project No.:	9703-296	Analyst:	SM	
Client Project ID:	Continental Heat Treating	ıg		
Sample Matrix:	Soil	Report Date:	4/4/97	

Client Sample No.:	CHT-B1-25'	CHT-B1-30'	CHT-B1-35'	CHT-B1-40'	Method Detection
Sierra Sample No.:	4567	4568	4569	4570	Limit, μg/kg
COMPOUNDS:					
1,2-Dichloroethane	ND	ND	ND	ND	3
1,1-Dichloroethene	ND	ND	ND	ND	3
cis-1,2-Dichloroethene	ND	17	ND	ND	3
trans-1,2-Dichloroethene	ND	ND	ND	ND	3
1,2-Dichloropropane	ND	ND	ND	ND	3
1,3-Dichloropropane	ND	ND	ND	ND	3
2,2-Dichloropropane	ND	ND	ND	ND	3
1,1-Dichloropropene	ND	ND	ND	ND	3
cis-1,3-dichloropropene	ND	ND	ND	ND	3
trans-1,3-dichloropropene	ND	ND	ND	ND	3
Ethylbenzene	ND	ND	ND	ND	3
Hexachlorobutadiene	ND	ND	ND	ND	3
Isopropylbenzene	ND	ND	ND	ND	3
p-Isopropyltoluene	ND	ND	ND	ND	3
Methylene chloride	ND	ND	ND	ND	3
Naphthalene	ND	ND	ND	ND	3
n-Propylbenzene	ND	ND	ND	ND	3
Styrene	ND	ND	ND	ND	3
1,1,1,2-Tetrachloroethane	ND	ND	ND .	ND	3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	33
letrachloroethene	29	50	8.4	16	3
l'oluene	ND	ND	ND	ND	3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	3
l,1,1-Trichloroethane	ND	ND	ND	ND	3
1,1,2-Trichloroethane	ND	ND	ND	ND	3

Environmental Support	Technologies, Inc.	Date Sampled:	3/27/97
23011 Moulton Parkwa	y, Suite E-6	Date Received:	3/28/97
Laguna Hills, CA 92653		Date Prepared:	4/1/97
		Date Analyzed:	4/1/97
Sierra Project No.:	9703-296	Analyst:	SM
Client Project ID:	Continental Heat Treating		
Sample Matrix:	Soil	Report Date:	4/4/97

		Concen	tration, μg/kg		
Client Sample No.:	CHT-B1-25'	CHT-B1-30'	CHT-B1-35'	CHT-B1-40'	Method Detection Limit,
Sierra Sample No.:	4567	4568	4569	4570	μg/kg
COMPOUNDS:					
Trichloroethene	7.0	9.4	ND	3.0	3
Trichlorofluoromethane	ND	ND	ND	ND	3
1,2,3-Trichloropropane	ND	ND	ND	ND	3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	3
Vinyl chloride	ND	ND	ND	ND	3
Total Xylenes	ND	ND	ND	ND	3
Dilution Factor	1	1	1	1	QC Limits
% Surrogate Recovery: 1-chloro-2-fluorobenzene	75	78	85	80	30-135

QC Sample ID: 9703-29	NO DOMESTICAL BEST CASES AND	ality Ass	urance/Qı	ality Contro	ol Data		
Compounds	LCS % Rec.	QC Limits	Spike % Rec.	Spike Dup % Rec.	QC Limits	RPD	QC Limits
1,1 Dichloroethane	102	80-120	102	104	47-132	1.2	0-30
Carbon Tetrachloride	102	80-120	105	106	43-143	0.5	0-30
Bromoform	110	80-120	110	108	13-159	2.3	0-30
Benzene	105	80-120	105	102	39-150	2.4	0-30
Toluene	105	80-120	105	102	46-148	2.4	0-30
Ethylbenzene	102	80-120	102	103	32-160	0.5	0-30

ND means Not Detected

Environmental Support Technologies, Inc. Date Sampled: 3/27/97 23011 Moulton Parkway, Suite E-6 Date Received: 3/28/97 Laguna Hills, CA 92653 Date Prepared: 4/1/97 Date Analyzed: 4/1/97 9703-296 Sierra Project No.: Analyst: SM Client Project ID: Continental Heat Treating Sample Matrix: Soil Report Date: 4/4/97

HALOGENATED AND AROMATIC VOLATILE ORGANICS EPA METHOD 8021

Client Sample No.:	CHT-B1-45'	CHT-B1-50'	CHT-B1-55'	CHT-B1-60'	Method Detection
Sierra Sample No.:	4571	4572	4573	4574	Limit, μg/kg
COMPOUNDS:					
Benzene	ND	ND	ND	ND	3
Bromobenzene	ND	ND	ND	ND	3
Bromochloromethane	ND	ND	ND	ND	3
Bromodichloromethane	ND	ND	ND	ND	3
Bromoform	ND	ND	ND	ND	3
Bromomethane	ND	ND	ND	ND	3
n- Butylbenzene	ND	ND	ND	ND	3
sec-Butylbenzene	ND	ND	ND	ND	3
tert-Butylbenzene	ND	ND	ND	ND	3
Carbon tetrachloride	ND	ND	ND	ND	3
Chlorobenzene	ND	ND	ND	ND	3
Chlorodibromomethane	ND	ND	ND	ND	3
Chloroethane	ND	ND	ND	ND	3
Chloroform	ND	ND	ND	ND	3
Chloromethane	ND	ND	ND	ND	3
2-Chlorotoluene	ND	ND	ND	ND	3
4-Chlorotoluene	ND	ND	ND	ND	3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	3
1,2-Dibromoethane	ND	ND	ND	ND	3
Dibromomethane	ND	ND	ND	ND	3
1,2-Dichlorobenzene	ND	ND	ND	ND	3
1,3-Dichlorobenzene	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND	ND	ND	ND	3
Dichlorodifluoromethane	ND	ND	ND	ND	3
1,1-Dichloroethane	ND	ND	ND	ND	3

Environmental Support	Technologies, Inc.	Date Sampled:	3/27/97	
23011 Moulton Parkway.	Suite E-6	Date Received:	3/28/97	
Laguna Hills, CA 92653		Date Prepared:	4/1/97	
		Date Analyzed:	4/1/97	
Sierra Project No.:	9703-296	Analyst:	SM	
Client Project ID:	Continental Heat Treatin	g		
Sample Matrix:	Soil	Report Date:	4/4/97	

		Concentration, µg/kg					
Client Sample No.:	CHT-B1-45'	CHT-B1-50'	CHT-B1-55'	CHT-B1-60'	Method Detection Limit,		
Sierra Sample No.:	4571	4572	4573	4574	μg/kg		
COMPOUNDS:	100 100 100						
1,2-Dichloroethane	ND	ND	ND	ND	3		
1,1-Dichloroethene	ND	ND	ND	ND	3		
cis-1,2-Dichloroethene	ND	17	ND	ND	3		
trans-1,2-Dichloroethene	ND	ND	ND	ND	3		
1,2-Dichloropropane	ND	ND	ND	ND	3		
1,3-Dichloropropane	ND	ND	ND	ND	3		
2,2-Dichloropropane	ND	ND	ND	ND	3		
1,1-Dichloropropene	ND	ND	ND	ND	3		
cis-1,3-dichloropropene	ND	ND	ND	ND	3		
trans-1,3-dichloropropene	ND	ND	ND	ND	3		
Ethylbenzene	ND	ND	ND	ND	3		
Hexachlorobutadiene	ND	ND	ND	ND	3		
Isopropylbenzene	ND	ND	ND	ND	3		
p-Isopropyltoluene	ND	ND	ND	ND	3		
Methylene chloride	ND	ND	ND	ND	3		
Naphthalene	ND	ND	ND	ND	3		
n-Propylbenzene	ND	ND	ND	ND	3		
Styrene	ND	ND	ND	ND	3		
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	3		
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	3		
Tetrachloroethene	27	4.8	5.2	130	3		
Toluene	ND	ND	ND	6.5	3		
1,2,3-Trichlorobenzene	ND	ND	ND	ND	3		
1,2,4-Trichlorobenzene	ND	ND	ND	ND	3		
1,1,1-Trichloroethane	ND	ND	ND	ND	3		
1,1,2-Trichloroethane	ND	ND	ND	ND	3		

Environmental Support Technologies, Inc. Date Sampled: 3/27/97 23011 Moulton Parkway, Suite E-6 Date Received: 3/28/97 Date Prepared: Laguna Hills, CA 92653 4/1/97 Date Analyzed: 4/1/97 Sierra Project No.: 9703-296 Analyst: SM Client Project ID: Continental Heat Treating Sample Matrix: Soil Report Date: 4/4/97

EPA METHOD 8021 CONTINUED

		Concen	tration, μg/kg		
Client Sample No.:	CHT-B1-45'	CHT-B1-50'	CHT-B1-55'	CHT-B1-60'	I a control
Sierra Sample No.:	4571	4572	4573	4574	Limit, μg/kg
COMPOUNDS:					
Trichloroethene	4.0	ND	ND	7.7	3
Trichlorofluoromethane	ND	ND	ND	ND	3.
1,2,3-Trichloropropane	ND	ND	ND	ND	3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	3
Vinyl chloride	ND	ND	ND	ND	3
Total Xylenes	ND	ND	ND	ND	2 - 3 1
Dilution Factor	1	1	1	1	QC Limits
% Surrogate Recovery: 1-chloro-2-fluorobenzene	83	85	96	95	30-135

Quality Assurance/Quality Control Data QC Sample ID: 9703-296-4575							
Compounds	LCS % Rec.	QC Limits	Spike % Rec.	Spike Dup % Rec.	QC Limits	RPD	QC Limits
1,1 Dichloroethane	102	80-120	102	104	47-132	1.2	0-30
Carbon Tetrachloride	102	80-120	105	106	43-143	0.5	0-30
Bromoform	110	80-120	110	108	13-159	2.3	0-30
Benzene	105	80-120	105	102	39-150	2.4	0-30
Toluene	105	80-120	105	102	46-148	2.4	0-30
Ethylbenzene	102	80-120	102	103	32-160	0.5	0-30

ND means Not Detected

Environmental Support Technologies, Inc. Date Sampled: 3/27/97 23011 Moulton Parkway, Suite E-6 Date Received: 3/28/97 Date Prepared: Laguna Hills, CA 92653 4/1/97 Date Analyzed: 4/1/97 Sierra Project No.: 9703-296 Analyst: SM Client Project ID: Continental Heat Treating 4/4/97 Report Date: Sample Matrix: Soil

HALOGENATED AND AROMATIC VOLATILE ORGANICS EPA METHOD 8021

]	
Client Sample No.:	CHT-B1-65'		Method Detection Limit,
Sierra Sample No.:	4575		μg/kg
COMPOUNDS:			
Benzene	ND		3
Bromobenzene	ND		3 3
Bromochloromethane	ND		
Bromodichloromethane	ND		3
Bromoform	ND		3
Bromomethane	ND		3
n- Butylbenzene	ИD		3 3 3
sec-Butylbenzene	ND		3
tert-Butylbenzene	ND		
Carbon tetrachloride	ND		3
Chlorobenzene	ND		3
Chlorodibromomethane	ND		3
Chloroethane	ND		3
Chloroform	ND		3
Chloromethane	ND		3
2-Chlorotoluene	ND		3 3
4-Chlorotoluene	ND		
1,2-Dibromo-3-chloropropane	ND		3
1,2-Dibromoethane	ND		3
Dibromomethane	ND		3
1,2-Dichlorobenzene	ND		3
1,3-Dichlorobenzene	ND		3
1,4-Dichlorobenzene	ND		3
Dichlorodifluoromethane	ND		3
1,1-Dichloroethane	ND		3

Environmental Support	Technologies, Inc.	Date Sampled: 3/27/97	
23011 Moulton Parkwa	y, Suite E-6	Date Received: 3/28/97	1
Laguna Hills, CA 92653		Date Prepared: 4/1/97	
		Date Analyzed: 4/1/97	
Sierra Project No.:	9703-296	Analyst: SM	
Client Project ID:	Continental Heat Treating		. 1
Sample Matrix:	Soil	Report Date: 4/4/97	:

	Concentration,	ug/kg
Client Sample No.:	CHT-B1-65'	Method Detection Limit,
Sierra Sample No.:	4575	μg/kg
COMPOUNDS:		
1,2-Dichloroethane	ND	3
1,1-Dichloroethene	ND	3
cis-1,2-Dichloroethene	ND	3
trans-1,2-Dichloroethene	ND	3
1,2-Dichloropropane	ND	3
1,3-Dichloropropane	ND	3
2,2-Dichloropropane	ND	
1,1-Dichloropropene	ND	1 1 1 1 3 3 3 3 3 3 3 3 3 3
cis-1,3-dichloropropene	ND	3
trans-1,3-dichloropropene	ND	3
Ethylbenzene	ND	3
Hexachlorobutadiene	ND	3
Isopropylbenzene	ND	3
p-Isopropyltoluene	ND	3 3 4 1 2
Methylene chloride	ND	3
Naphthalene	ND	3
n-Propylbenzene	ND	3.0
Styrene	ND	<u> </u>
1,1,1,2-Tetrachloroethane	ND	3
1,1,2,2-Tetrachloroethane	ND	3
Tetrachloroethene	ND	31
Toluene	ND	3
1,2,3-Trichlorobenzene	ND	3
1,2,4-Trichlorobenzene	ND	3
1,1,1-Trichloroethane	ND	3
1,1,2-Trichloroethane	ND	3

Environmental Support Technologies, Inc.	Date Sampled: 3/27/97
23011 Moulton Parkway, Suite E-6	Date Received: 3/28/97
Laguna Hills, CA 92653	Date Prepared: 4/1/97
	Date Analyzed: 4/1/97
Sierra Project No.: 9703-296	Analyst: SM
Client Project ID: Continental Heat Treating	
Sample Matrix: Soil	Report Date: 4/4/97

Client Sample No.:	Concentration,	µg/kg
	CHT-B1-65'	Method Detection
Sierra Sample No.:	4575	Limit, µg/kg
COMPOUNDS:		
Trichloroethene	ND	3 , 40, 4, 1
Trichlorofluoromethane	ND	3
1,2,3-Trichloropropane	ND	3
1,2,4-Trimethylbenzene	ND	3
1,3,5-Trimethylbenzene	ND	3
Vinyl chloride	ND	3
Total Xylenes	ND	3
Dilution Factor	1	QC Limits
% Surrogate Recovery: 1-chloro-2-fluorobenzene	110	30-135

Quality Assurance/Quality Control Data QC Sample ID: 9703-296-4575							
Compounds	LCS % Rec.	QC Limits	Spike % Rec.	Spike Dup % Rec.	QC Limits	RPD	QC Limits
1,1 Dichloroethane	102	80-120	102	104	47-132	1.2	0-30
Carbon Tetrachloride	102	80-120	105	106	43-143	0.5	0-30
Bromoform	110	80-120	110	108	13-159	2.3	0-30
Benzene	105	80-120	105	102	39-150	2.4	0-30
Toluene	105	80-120	105	102	46-148	2.4	0-30
Ethylbenzene	102	80-120	102	103	32-160	0.5	0-30

ND means Not Detected